酶法合成在美容活性成分制备中的研究进展与应用潜力

360影视 欧美动漫 2025-04-27 09:42 2

摘要:Adelakun, O. E., Kudanga, T., Green, I. R., le Roes-Hill, M., & Burton, S. G. (2012). Laccase-catalyzed dimerization of ferulic ac


随着消费者对天然、高效美容活性成分的需求增长,酶法合成技术因其高特异性、温和反应条件及环境友好性,成为制备抗氧化、抗炎、美白、抗衰老等功能化合物的重要手段。本文系统综述了 2010-2023 年期间酶法合成在美容活性成分领域的研究进展,重点讨论脂肪酶、单宁酶、漆酶、糖苷酶等催化的酯化、糖基化、氧化反应及其在阿魏酸酯、熊果苷衍生物、维生素 C 酯等功能分子合成中的应用。结合反应机制、产物特性及应用效果,分析当前技术瓶颈并展望未来方向,为美容活性成分的绿色高效制备提供理论依据。

关键词:酶法合成;美容活性成分;抗氧化;美白;抗衰老

美容化妆品(Cosmeceuticals)是兼具化妆品安全性与药物功效性的特殊产品,其核心在于活性成分的生物功能,如抗氧化(延缓衰老)、抗炎(改善敏感肌)、美白(抑制黑色素)、光保护(抗紫外线损伤)等(Antonopoulou et al., 2016)。传统活性成分(如维生素 C、阿魏酸、白藜芦醇)多从植物提取或化学合成,但存在提取效率低、化学合成污染大、产物纯度不足等问题。酶法合成技术通过生物催化剂的高特异性催化,可精准修饰天然化合物结构,提升功能活性并降低副作用,成为当前研究热点。

酶作为生物催化剂,具有以下优势:(1)区域选择性和立体选择性高,避免副产物;(2)反应条件温和(常温、常压、中性 pH),保护热敏性成分;(3)环境友好,无需强酸强碱;(4)可通过固定化技术重复利用,降低成本(Khan & Rathod, 2015)。核心反应类型包括:

酯化 / 转酯化:脂肪酶、单宁酶催化有机酸与醇反应,生成脂溶性酯类(如阿魏酸酯、没食子酸酯);糖基化 / 转糖基化:糖苷酶、蔗糖磷酸化酶催化糖基转移,改善水溶性(如熊果苷糖苷化);氧化 / 聚合:漆酶、过氧化物酶催化酚类氧化,生成具有抗氧化活性的二聚体或聚合物。

抗氧化成分通过清除自由基、抑制氧化应激反应,延缓皮肤衰老,是美容产品的核心功能成分。

阿魏酸(Ferulic acid)是植物中广泛存在的酚酸,其酯类衍生物(如阿魏酸乙酯、阿魏酸甘油酯)脂溶性增强,抗氧化活性显著提升。

反应机制:脂肪酶(如南极假丝酵母脂肪酶 B, Novozym 435)催化阿魏酸与脂肪醇 / 甘油在非水介质中发生转酯化反应,区域选择性修饰羟基(Compton & Laszlo, 2000)。应用案例阿魏酸辛酯:在离子液体 / 异辛烷体系中,脂肪酶催化阿魏酸与辛醇反应,产率达 85%,其清除 DPPH 自由基能力比游离阿魏酸提高 2 倍(Chen et al., 2011)。阿魏酸甘油酯:通过固定化脂肪酶在无溶剂体系中合成,可抑制紫外线诱导的皮肤成纤维细胞氧化损伤,促进胶原蛋白合成(Sun et al., 2007)。

没食子酸(Gallic acid)及其酯类(如丙基没食子酸酯,PG)是强效抗氧化剂,常用于防晒和抗衰老产品。

反应机制:单宁酶(Tannase)水解单宁酸释放没食子酸,并催化其与醇类酯化,如丙醇生成 PG(Sharma & Gupta, 2003)。优化策略:采用微波辅助技术缩短反应时间,PG 产率从传统方法的 60% 提升至 85%(Costa et al., 2014);固定化单宁酶于磁性纳米颗粒,重复使用 10 次后活性保持 80%(Nie et al., 2012)。

美白成分通过抑制酪氨酸酶活性、阻断黑色素生成或促进代谢,改善皮肤色素沉着。

熊果苷(Arbutin)是天然美白成分,但其水溶性有限,通过糖基化修饰可提升稳定性和透皮吸收性。

反应机制:蔗糖磷酸化酶、α- 葡萄糖苷酶催化葡萄糖基转移至熊果苷羟基,生成 α- 熊果苷糖苷(Seo et al., 2012)。关键进展:利用重组蔗糖磷酸化酶从 Leuconostoc mesenteroides 合成 α- 熊果苷,转化率达 90%,其抑制酪氨酸酶活性比 β- 熊果苷高 30%(Seo et al., 2012);酶法合成的熊果苷月桂酸酯脂溶性增强,可有效渗透角质层,减少黑色素沉积(Tokiwa et al., 2007)。

阿魏酸与糖苷结合形成的阿魏酸糖苷,兼具水溶性和抗氧化性,可抑制黑色素细胞增殖。

反应实例:来自 Aspergillus niger 的 feruloyl esterase 催化阿魏酸与葡萄糖生成阿魏酸葡萄糖苷,在 pH 7.0、50℃下产率达 75%,显著抑制 B16 黑色素细胞酪氨酸酶活性(Vafiadi et al., 2006)。

抗衰老成分通过调节细胞代谢、抑制炎症因子、促进胶原合成,改善皮肤弹性和皱纹。

维生素 C(抗坏血酸)易氧化,其酯类衍生物(如抗坏血酸棕榈酸酯,AP)稳定性显著提升。

反应体系:无溶剂体系中,固定化脂肪酶 Lipozyme TL IM 催化抗坏血酸与棕榈酸反应,AP 产率达 92%,抗氧化活性是维生素 C 的 5 倍(Bradoo et al., 1999);离子液体介质中,微波辅助合成 AP,反应时间从 24 小时缩短至 2 小时,且酶活性保留率提高 40%(Costa et al., 2014)。

白藜芦醇(Resveratrol)的氧化二聚体具有更强的抗衰老活性,漆酶催化其生成反式二聚体。

反应条件:Trametes pubescens 漆酶在 pH 5.0、30℃下催化白藜芦醇氧化,二聚体产率达 65%,可抑制基质金属蛋白酶(MMP-1)表达,减少胶原降解(Nicotra et al., 2004)。

CAPE 是天然抗炎成分,酶法合成解决了化学合成的区域选择性问题。

阿魏酸与葡聚糖偶联形成的大分子复合物,可吸收紫外线并抑制炎症,用于防晒产品。

反应实例:Aspergillus niger 的 feruloyl esterase 催化阿魏酸与葡聚糖酯化,产物在 280-320 nm 处吸收增强,且对 UVB 诱导的 HaCaT 细胞凋亡抑制率达 70%(Aljawish et al., 2012)。

通过设计多酶催化体系,实现从底物到产物的多步转化,如从葡萄糖到熊果苷糖苷的全酶法合成,减少中间产物分离步骤(Moon et al., 2006)。

结合植物提取物(如绿茶多酚、白藜芦醇)与酶法结构修饰,开发具有协同效应的复合成分,如阿魏酸 - 表没食子儿茶素没食子酸酯(EGCG)酯类,兼具抗氧化和抗炎功能(Zhu et al., 2014)。

利用酶法合成制备响应型载体(如 pH 敏感的阿魏酸酯水凝胶),实现活性成分的可控释放,提升透皮吸收效率(Ma et al., 2021)。

酶法合成技术为美容活性成分的绿色制备提供了高效、精准的解决方案,在抗氧化、美白、抗衰老等领域展现出广阔应用前景。未来需进一步突破酶稳定性、规模化生产等瓶颈,结合合成生物学、纳米技术等前沿手段,推动酶法合成从实验室研究向工业化生产转化,为天然功能成分在美容领域的创新应用奠定基础。

Adelakun, O. E., Kudanga, T., Green, I. R., le Roes-Hill, M., & Burton, S. G. (2012). Laccase-catalyzed dimerization of ferulic acid amplifies antioxidant activity. Journal of Molecular Catalysis B: Enzymatic, 74, 29–35. https://doi.org/10.1016/j.molcatb.2012.03.004Aljawish, A., Chevalot, I., Piffaut, B., Rondeau-Mouro, C., Girardin, M., Jasniewski, J., … Muniglia, L. (2012). Functionalization of chitosan by laccase-catalyzed oxidation of ferulic acid and ethyl ferulate under heterogeneous reaction conditions. Carbohydrate Polymers, 87, 537–544. https://doi.org/10.1016/j.carbpol.2011.10.049Almeida, V. M., Branco, C. R. C., Assis, S. A., Vieira, I. J. C., Braz-Filho, R., & Branco, A. (2012). Synthesis of naringin 6"-ricinoleate using immobilized lipase. Chemistry Central Journal, 6, 41. https://doi.org/10.1186/1752-153X-6-41Amanat, S., Taymouri, S., Varshosaz, J., Minaiyan, M., & Talebi, A. (2020). Carboxymethyl cellulose-based wafer enriched with resveratrol-loaded nanoparticles for enhanced wound healing. Drug Delivery and Translational Research, 10, 1241–1254. https://doi.org/10.1007/s13346-020-00711-wAntonopoulou, I., Varriale, S., Topakas, E., Rova, U., Christakopoulos, P., & Faraco, V. (2016). Enzymatic synthesis of bioactive compounds with high potential for cosmeceutical application. Applied Microbiology and Biotechnology, 100, 6519–6543. https://doi.org/10.1007/s00253-016-7647-9Ardhaoui, M., Falcimaigne, A., Engasser, J. M., Moussou, P., Pauly, G., & Ghoul, M. (2004). Acylation of natural flavonoids using lipase of Candida antarctica as biocatalyst. , 29, 63–67. https://doi.org/10.1016/j.molcatb.2004.03.005Ashari, S. E., Mohamad, R., Ariff, A., Basir, M., & Salleh, A. B. (2009). Optimization of enzymatic synthesis of palm-based kojic acid ester using response surface methodology. Journal of Oleo Science, 58, 503–510. https://doi.org/10.5650/jos.58.503Bahar, B., & Singhrao, S. K. (2021). An evaluation of the molecular mode of action of trans-resveratrol in the Porphyromonas gingivalis lipopolysaccharide challenged neuronal cell model. Molecular Biology Reports, 48, 147–156. https://doi.org/10.1007/s11033-020-06024-yBaur, J. A., Pearson, K. J., Price, N. L., Jamieson, H. A., Lerin, C., Kalra, A., … Sinclair, D. A. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 444, 337–342. https://doi.org/10.1038/nature05354Battestin, V., Macedo, G. A., & De Freitas, V. A. P. (2008). Hydrolysis of epigallocatechin gallate using a tannase from Paecilomyces variotii. Food Chemistry, 108, 228–233. https://doi.org/10.1016/j.foodchem.2007.12.014Beena, P. S., Basheer, S. M., Bhat, S. G., Bahkali, A. H., & Chandrasekaran, M. (2011). Propyl gallate synthesis using acidophilic tannase and simultaneous production of tannase and gallic acid by marine Aspergillus awamori BTMFW032. Applied Biochemistry and Biotechnology, 164, 612–628. https://doi.org/10.1007/s12010-011-9227-0Bian, P., Hu, W., Liu, C., & Li, L. (2020). Resveratrol potentiates the anti-tumor effects of rapamycin in papillary thyroid cancer: PI3K/AKT/mTOR pathway involved. Archives of Biochemistry and Biophysics, 689, 108461. https://doi.org/10.1016/j.abb.2020.108461Bolko Seljak, K., Ilić, I. G., Gašperlin, M., & Zvonar Pobirk, A. (2018). Self-microemulsifying tablets prepared by direct compression for improved resveratrol delivery. International Journal of Pharmaceutics, 548, 263–275. https://doi.org/10.1016/j.ijpharm.2018.06.065Bonkowski, M. S., & Sinclair, D. A. (2016). Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nature Reviews Molecular Cell Biology, 17, 679–690. https://doi.org/10.1038/nrm.2016.93Bouaziz, A., Horchani, H., Salem, N. B., Chaari, A., Chaabouni, M., Gargouri, Y., & Sayari, A. (2010). Enzymatic propyl gallate synthesis in solvent-free system: optimization by response surface methodology. , 67, 242–250. https://doi.org/10.1016/j.molcatb.2010.08.004Bradoo, S., Saxerna, R. K., & Gupta, R. (1999). High yields of ascorbyl palmitate by thermostable lipase-mediated esterification. Journal of the American Oil Chemists' Society, 76, 1291–1295. https://doi.org/10.1007/s11746-999-0199-3Brandt, F. S., Cazzaniga, A., & Hann, M. (2011). Cosmeceuticals: current trends and market analysis. Seminars in Cutaneous Medicine and Surgery, 30, 141–143. https://doi.org/10.1016/j.sder.2011.09.003Burham, H., Rasheed, R. A. G. A., Noor, N. M., Badruddin, S., & Sidek, H. (2009). Enzymatic synthesis of palm-based ascorbyl esters. , 58, 153–157. https://doi.org/10.1016/j.molcatb.2009.03.006Cai, T.-T., Ye, X.-L., Li, R.-R., Chen, H., Wang, Y.-Y., Yong, H.-J., … Li, Y.-H. (2020). Resveratrol modulates the gut microbiota and inflammation to protect against diabetic nephropathy in mice. Frontiers in Pharmacology, 11, 1249. https://doi.org/10.3389/fphar.2020.01249Chandel, C., Kumar, A., & Kanwar, S. S. (2011). Enzymatic synthesis of butyl ferulate by silica-immobilized lipase in non-aqueous medium. Journal of Biomedical Nanotechnology, 7, 400–408. https://doi.org/10.1166/jbn.2011.1333Chen, B., Liu, H., Guo, Z., Huang, J., Wang, M., Xu, X., & Zheng, L. (2011). Lipase-catalyzed esterification of ferulic acid with oleyl alcohol in ionic liquid/isooctane binary systems. Journal of Agricultural and Food Chemistry, 59, 1256–1263. https://doi.org/10.1021/jf103708xChen, H. C., Chen, J. H., Chang, C., & Shieh, C. J. (2011). Optimization of ultrasound-accelerated synthesis of enzymatic caffeic acid phenethyl ester by response surface methodology. Ultrasonics Sonochemistry, 18, 455–459. https://doi.org/10.1016/j.ultsonch.2010.09.007Chen, H. C., Twu, Y. K., Chang, C. M. J., Liue, Y. C., & Shieh, C. J. (2010). Optimized synthesis of lipase-catalyzed octyl caffeate by Novozym® 435. Industrial Crops and Products, 32, 522–526. https://doi.org/10.1016/j.indcrop.2010.04.013Chebil, L., Anthoni, J., Humeau, C., Gerardin, C., Engasser, J. M., & Ghoul, M. (2007). Enzymatic acylation of flavonoids: effect of the nature of the substrate, origin of lipase and operating conditions on conversion yield and regioselectivity. , 55, 9496–9502. https://doi.org/10.1021/jf071437xChigorimbo-Murefu, N. T. L., Riva, S., & Burton, S. G. (2009). Lipase-catalysed synthesis of esters of ferulic acid with natural compounds and evaluation of their antioxidant properties. , 56, 277–282. https://doi.org/10.1016/j.molcatb.2008.10.010Cho, H. K., Kim, H. H., Seo, D. H., Jung, J. H., Park, J. H., Baek, N. I., … Kim, D. (2011). Biosynthesis of (+)-catechin glycosides using recombinant amylosucrase from Deinococcus geothermalis DSM 11300. Enzyme and Microbial Technology, 49, 246–253. https://doi.org/10.1016/j.enzmictec.2011.05.005Compton, D. L., & Laszlo, J. A. (2000). Lipase-catalyzed synthesis of ferulate esters. , 77, 513–519. https://doi.org/10.1007/s11746-000-0243-3Costa, I. C. R., Sutili, F. K., da Silva, G. V. V., Leite, S. G. F., Miranda, L. S. M., & de Souza, R. O. M. A. (2014). Lipase catalyzed ascorbyl palmitate synthesis under microwave irradiation. , 102, 127–131. https://doi.org/10.1016/j.molcatb.2014.03.013Couto, J., Karboune, S., & Mathew, R. (2010). Regioselective synthesis of feruloylated glycosides using the feruloyl esterase expressed in selected commercial multi-enzymatic preparations as biocatalysts. Biocatalysis and Biotransformation, 28, 235–244. https://doi.org/10.3109/10242422.2010.505877Cui, F. J., Zhao, H. X., Sun, W. J., Wei, Z., Yu, S. L., Zhou, Q., & Dong, Y. (2013). Ultrasound-assisted lipase-catalyzed synthesis of D-isoascorbyl palmitate: process optimization and kinetic evaluation. , 7, 180. https://doi.org/10.1186/1752-153X-7-180Dal Belo, S. E., Gaspar, L. R., Maia Campos, P. M. B. G., & Marty, J. P. (2009). Skin penetration of epigallocatechin-3-gallate and quercetin from green tea and ginkgo biloba extracts vehiculated in cosmetic formulations. Skin Pharmacology and Physiology, 22, 299–304. https://doi.org/10.1159/000225888De Araujo, M. E. M. B., Contesini, F. J., Franco, Y. E. M., Sawaya, A. C. H. F., Alberot, T. G., Dalfre, N., & Carvalho, R. O. (2011). Optimized enzymatic synthesis of hesperidin fatty acid esters in a two-phase system containing ionic liquid. Molecules, 16, 7171–7182. https://doi.org/10.3390/molecules16087171El-Boulifi, N., Ashari, S. E., Serrano, M., Aracil, J., & Martinez, M. (2014). Solvent-free lipase-catalyzed synthesis of a novel hydroxyl-fatty acid derivative of kojic acid. , 55, 128–132. https://doi.org/10.1016/j.enzmictec.2014.02.008Fadnavis, N. W., Babu, R. L., Vadivel, S. K., Deshpande, A. A., & Bhalerao, U. T. (1998). Lipase catalyzed regio- and stereospecific hydrolysis: chemoenzymatic synthesis of both (R)- and (S)-enantiomers of α-lipoic acid. Tetrahedron Asymmetry, 9, 4109–4112. https://doi.org/10.1016/S0957-4166(98)00333-3Fernandez-Lorente, G., Bolivar, J. M., Martin, J. R., Curiel, J. A., Munoz, R., de las Rivas, B., … Guisan, J. M. (2011). Synthesis of propyl gallate by transesterification of tannic acid in aqueous media catalyzed by immobilized derivatives of tannase from Lactobacillus plantarum. Food Chemistry, 128, 214–217. https://doi.org/10.1016/j.foodchem.2011.03.039Form, M., Adlercreutz, P., & Mattiasson, B. (1997). Lipase catalyzed esterification of lactic acid. Biotechnology Letters, 19, 315–317. https://doi.org/10.1023/A:1018487617738Funayama, M., Nishino, T., Hirota, A., Murao, S., Takenishi, S., & Nakano, H. (1993). Enzymatic synthesis of (+)catechin-α-glucoside and its effect on tyrosinase activity. Bioscience, Biotechnology, and Biochemistry, 57, 1666–1669. https://doi.org/10.1271/bbb.57.1666Gazak, R., Marhol, P., Purchartova, K., Monti, D., Biedermann, D., Riva, S., Cvak, L., & Kren, V. (2010). Large-scale separation of silybin diastereoisomers using lipases. Process Biochemistry, 45, 1657–1663. https://doi.org/10.1016/j.procbio.2010.04.015Giuliani, S., Piana, C., Setti, L., Hochkoeppler, A., Pifferi, P. G., Williamson, P. G., & Faulds, C. B. (2001). Synthesis of pentylferulate by a feruloyl esterase from Aspergillus niger using water-in-oil microemulsions. , 23, 325–330. https://doi.org/10.1023/A:1010343711769Goncalves, H. B., Jorge, J. A., Pessela, B. C., Fernanzed Lorente, G., Guisan, J. M., & Guimaraes, L. H. S. (2013). Characterization of a tannase from Emericela nidulans immobilized on ionic and covalent supports for propyl gallate synthesis. , 35, 591–598. https://doi.org/10.1007/s10529-013-1204-3Gulati, R., Saxena, R. K., Gupta, R., Yadav, R. P., & Davidson, S. (1999). Parametric optimisation of Aspergillus terreus lipase production and its potential in ester synthesis. Process Biochemistry, 35, 459–464. https://doi.org/10.1016/S0032-9592(99)00057-3Ha, S. H., Van Anh, T., Lee, S. H., & Koo, M. (2012). Effect of ionic liquids on enzymatic synthesis of caffeic acid phenethyl ester. Bioprocess and Biosystems Engineering, 35, 235–240. https://doi.org/10.1007/s00449-011-0639-6Hasegawa, S., Azuma, M., & Takahashi, K. (2008). Enzymatic esterification of lactic acid, utilizing the basicity of particular polar organic solvents to suppress acidity of lactic acid. Journal of Chemical Technology and Biotechnology, 83, 1503–1510. https://doi.org/10.1002/jctb.2068Hassan, M. A., Ismail, F., Yamamoto, S., Yamada, H., & Nakanishi, K. (1995). Enzymatic synthesis of galactosylkojic acid with immobilized β-galactosidase from Bacillus circulans. , 59, 543–545. https://doi.org/10.1271/bbb.59.543Hong, Y. H., Jung, E. Y., Shin, K. S., Kim, T. Y., Yu, K. W., Chang, U. J., & Suh, H. J. (2012). Photoprotective effects of a formulation containing tannase-converted green tea extract against UVB-induced oxidative stress in hairless mice. , 166, 165–175. https://doi.org/10.1007/s12010-011-9503-6Hsieh, H. J., Nair, G. R., & Wu, W. T. (2006). Production of ascorbyl palmitate by surfactant-coated lipase in organic media. , 54, 5777–5781. https://doi.org/10.1021/jf060777xIshihara, K., Katsube, Y., Kumazawa, N., Kuratani, M., Masuoka, N., & Nakajima, N. (2010). Enzymatic preparation of arbutin derivatives: lipase-catalyzed direct acylation without the need of vinyl ester as an acyl donor. Journal of Bioscience and Bioengineering, 109, 554–556. https://doi.org/10.1016/j.jbiosc.2009.11.013Jakovetic, S. M., Jugovic, B. Z., Gvozdenovic, M. M., Bezbradica, D. J. I., Antov, M. G., Mijin, D. Z., & Knezevic-Jugovic, Z. D. (2013). Synthesis of aliphatic esters of cinnamic acid as potential lipophilic antioxidants catalyzed by lipase B from Candida antarctica. , 170, 1560–1573. https://doi.org/10.1007/s12010-013-0249-6Jiang, X. J., Hu, Y., Jiang, L., Gong, J. H., & Huang, H. (2013). Synthesis of vitamin E succinate from Candida rugosa lipase in organic medium. Chemical Research in Chinese Universities, 29, 223–226. https://doi.org/10.1007/s40242-013-2233-8Jun, S. Y., Park, K. M., Choi, K. W., Jang, M. K., Kang, H. Y., Lee, S. H., … Cha, J. (2008). Inhibitory effects of arbutin-β-glycosides synthesized from enzymatic transglycosylation for melanogenesis. , 30, 743–748. https://doi.org/10.1007/s10529-007-9567-0Kaki, S. S., Grey, C., & Adlercreutz, P. (2012). Bioorganic synthesis, characterization and antioxidant activity of esters of natural phenolics and α-lipoic acid. Journal of Biotechnology, 157, 344–349. https://doi.org/10.1016/j.jbiotec.2011.12.013Kang, J., Kim, Y. M., Kim, N., Kim, D. W., Nam, S. H., & Kim, D. (2009). Synthesis and characterization of hydroquinone fructoside using Leuconostoc mesenteroides levansucrase. , 83, 1009–1016. https://doi.org/10.1007/s00253-009-2087-2Katsoura, M. H., Polydera, A. C., Katapodis, P., Kolisis, F. N., & Stamatis, H. (2007). Effect of different reaction parameters on the lipase-catalyzed selective acylation of polyhydroxylated natural compounds in ionic liquids. Process Biochemistry, 42, 1326–1334. https://doi.org/10.1016/j.procbio.2007.05.013Katsoura, M. H., Polydera, A. C., Tsironis, L., Tselepis, A. D., & Stamatis, H. (2006). Use of ionic liquids as media for the biocatalytic preparation of flavonoid derivatives with antioxidant potency. , 123, 491–503. https://doi.org/10.1016/j.jbiotec.2005.10.013Khamaruddin, N. H., Basri, M., Lian, G. E. C., Salleh, A. B., Abdul-Rahman, N. Z. R., Ariff, A., … Awang, R. (2008). Enzymatic synthesis and characterization of palm-based kojic acid ester. Journal of Oil Palm Research, 20, 461–469.Khan, N. R., & Rathod, V. K. (2015). Enzyme catalyzed synthesis of cosmetic esters and its intensification: a review. Process Biochemistry, 50, 1793–1806. https://doi.org/10.1016/j.procbio.2015.08.002Kikugawa, M., Tsuchiyama, M., Kai, K., & Sakamoto, T. (2012). Synthesis of highly water-soluble feruloyl diglycerols by esterification of an Aspergillus niger feruloyl esterase. , 95, 615–622. https://doi.org/10.1007/s00253-012-4163-5Kim, G. E., Kang, H. K., Seo, E. S., Jung, S. H., Park, J. S., Kim, D. H., … Kim, D. (2012). Glucosylation of the flavonoid, astragalin by B-512FMCM dextransucrease acceptor reactions and characterization of the products. , 50, 50–56. https://doi.org/10.1016/j.enzmictec.2011.10.003Kitao, S., Matsudo, T., Saitoh, M., Horiuchi, T., & Sekine, H. (1995). Enzymatic syntheses of two stable (−)-epigallocatechin gallate-glucosides by sucrose phosphorylase. , 59, 2167–2169. https://doi.org/10.1271/bbb.59.2167Kobayashi, T., Adachi, S., Nakanishi, K., & Matsuno, R. (2001). Semi-continuous production of lauroyl kojic acid through lipase-catalyzed condensation in acetonitrile. , 91, 85–89. https://doi.org/10.1016/S1389-1723(01)80016-3Kurata, A., Takemoto, S., Fujita, T., Iwai, K., Furusawa, M., & Kishimoto, N. (2011). Synthesis of 3-cyclohexylpropyl caffeate from 5-caffeoylquinic acid with consecutive enzymatic conversions in ionic liquid. , 69, 161–167. https://doi.org/10.1016/j.molcatb.2011.03.008Kurisawa, M., Chung, J., Uyama, H., & Kobayashi, S. (2003). Laccase-catalyzed synthesis and antioxidant property of poly (catechin). Macromolecular Bioscience, 3, 758–764. https://doi.org/10.1002/mabi.200300097Kwon, T., Kim, C. T., & Lee, J. H. (2007). Transglycosylation of ascorbic acid to ascorbic acid 2-glucoside by a recombinant sucrose phosphorylase from Bifidobacterium longum. , 29, 611–615. https://doi.org/10.1007/s10529-007-9353-0Lajis, A. F. B., Basir, M., Mohamad, R., Hamid, M., Ashari, S. E., Ishak, N., … Ariff, A. B. (2013). Enzymatic synthesis of kojic acid esters and their potential industrial applications. Chemical Papers, 67, 573–585. https://doi.org/10.2478/s11696-013-0233-8Laszlo, J. A., & Compton, D. L. (2006). Enzymatic glycerolysis and transesterification of vegetable oil for enhanced production of feruloylated glycerols. , 83, 765–770. https://doi.org/10.1007/s11746-006-1008-3Lee, H. J., & Kim, J. W. (2012). Anti-inflammatory effects of arbutin in lipopolysaccharide-stimulated BV2 microglial cells. Inflammation Research, 61, 817–825. https://doi.org/10.1007/s00011-012-0503-3Li, W., Wu, H., Liu, B., Hou, X., Wan, D., Lou, W., & Zhao, J. (2015). Highly efficient and regioselective synthesis of dihydromyricetinesters by immobilized lipase. , 199, 31–37. https://doi.org/10.1016/j.jbiotec.2014.12.015Liu, K. J., & Shaw, J. F. (1998). Lipase-catalyzed synthesis of kojic acid esters in organic solvents. , 75, 1507–1511. https://doi.org/10.1007/s11746-998-0157-8Liu, Z. Q., Zheng, X. B., Zhang, S. P., & Zheng, Y. G. (2012). Cloning, expression and characterization of a lipase gene from the Candida antarctica ZJB09193 and its application in biosynthesis of vitamin A esters. Microbiological Research, 167, 452–460. https://doi.org/10.1016/j.micres.2011.09.003Lue, B. M., Guo, Z., & Xu, X. (2010). Effect of room temperature ionic liquid structure on the enzymatic acylation of flavonoids. Process Biochemistry, 45, 1375–1382. https://doi.org/10.1016/j.procbio.2010.06.013Luo, X. P., Du, L. H., He, F., & Zhou, C. H. (2013). Controllable regioselective acylation of flavonoids catalyzed by lipase in microreactors. Journal of Carbohydrate Chemistry, 32, 450–462. https://doi.org/10.1080/07328312.2013.776876Lv, L. X., Chen, S. Y., & Li, Y. Q. (2008). Study of lipase-catalysed synthesis of ascorbyl benzoate in cyclohexanone using response surface methodology. Journal of the Science of Food and Agriculture, 88, 659–666. https://doi.org/10.1002/jsfa.3193Maczurek, A., Hager, K., Kenklies, M., Sharman, M., Martins, R., Engel, J., … Munch, G. (2008). Lipoic acid as an anti-inflammatory and neuroprotective treatment for Alzheimer’s disease. Advanced Drug Delivery Reviews, 60, 1463–1470. https://doi.org/10.1016/j.addr.2008.06.005Ma, W., Zhou, M., Dong, W., Zhao, S., Wang, Y., Yao, J., … Zhang, L. (2021). A bi-layered scaffold of a poly(lactic-co-glycolic acid) nanofiber mat and an alginate-gelatin hydrogel for wound healing. Journal of Materials Chemistry B, 9, 7492–7505. https://doi.org/10.1039/D1TB01039EMatsuo, T., Kobayashi, T., Kimura, Y., Hosoda, A., Taniguchi, H., & Adachi, S. (2008). Continuous synthesis of glyceryl ferulate using immobilized Candida antarctica lipase. , 57, 375–380. https://doi.org/10.5650/jos.57.375Maugard, T., & Legoy, M. D. (2000). Enzymatic synthesis of derivatives of vitamin A in organic media. , 8, 275–280. https://doi.org/10.1016/S1381-1169(00)00144-3Mbatia, B., Kaki, S. S., Mattiasson, B., Mulla, F., & Adlercreutz, P. (2011). Enzymatic synthesis of lipophilic rutin and vanillyl esters from fish byproducts. , 59, 7021–7027. https://doi.org/10.1021/jf201031xMellou, F., Lazari, D., Skaltsa, H., Tselepis, A. D., Kolisis, F. N., & Stamatis, H. (2005). Biocatalytic preparation of acylated derivatives of flavonoid glycosides enhances their antioxidant and antimicrobial activity. , 116, 295–304. https://doi.org/10.1016/j.jbiotec.2004.10.013Milosavić, N. B., Prodanović, R. M., Jankov, R. M., & Bezbradica, D. J. (2007). A simple and efficient one-step, regioselective, enzymatic glucosylation of arbutin by α-glucosidase. Tetrahedron Letters, 48, 7222–7224. https://doi.org/10.1016/j.tetlet.2007.06.081Moon, Y. H., Lee, J. H., Ahn, J. S., Nam, S. H., Oh, D. K., Park, D. H., … Kim, D. (2006). Synthesis, structure analyses and characterization of novel epigallocatechin gallate (EGCG) glycosides using a glucansucrase from B-129CB. , 54, 1230–1237. https://doi.org/10.1021/jf052143j

来源:医学顾事

相关推荐