摘要:硬碳是钠离子电池(SIBs)中最具商业可行性的阳极材料,然而,其实际应用仍受限于低电压平台容量不足,这一关键参数直接影响储能容量。本文,内蒙古科技大学崔金龙 副教授、华南理工大学钟林新 教授等在《Caarbon Energy》期刊发表名为“A Dual-Pha
1成果简介
硬碳是钠离子电池(SIBs)中最具商业可行性的阳极材料,然而,其实际应用仍受限于低电压平台容量不足,这一关键参数直接影响储能容量。本文,内蒙古科技大学崔金龙 副教授、华南理工大学钟林新 教授等在《Caarbon Energy》期刊发表名为“A Dual-Phase Pore Engineering Strategy to Enhance Low-Voltage Plateau Capacity of Hard Carbon for Sodium-Ion Batteries”的论文,研究提出了一种针对性组分去除与化学蚀刻策略,旨在精确调控硬碳的多孔结构,从而显著提升平台容量。
该策略通过碱性溶解去除组分,形成可调尺寸的闭合孔芯。随后,原位存在的碱性溶液通过化学蚀刻对孔结构进行工程化处理。优化后的硬碳材料不仅具有短程无序石墨域以促进钠离子的插层与脱插层,还具备大量微孔及闭合孔结构,其孔径适中且伴有超薄碳层(1−3层),从而显著增加钠离子储存位点。所得硬质碳材料展现出高达389.6 mAh g^(−1)的高可逆比容量,低电压平台容量最高可达261.5 mAh g^(−1),初始库仑效率(ICE)达90.7%。关键的是,这种成本效益高的方法在木质纤维素生物质中具有广泛的前驱体适应性,为设计高性能碳质负极材料在SIBs中的应用建立了通用模版。
2图文导读
图1、(A) Schematic of the dual-phase pore engineering process for hard carbon synthesis. (B) FTIR spectra of balsa wood powder, O-300, and O-300-0.4KOH. (C) XRD patterns of O-300 and O-300-0.4KOH. SEM images of (D) O-300 and (E) O-300-0.4KOH.
图2、Pore structure characterizations of hard carbons. (A) N2 adsorption−desorption isotherms and (B) pore size distributions after carbonization at 1100°C. (C) N2 adsorption−desorption isotherms, (D) pore size distributions, (E) CO2 adsorption−desorption isotherms, and (F) pore size distributions after carbonization at 1600°C. (G) SAXS patterns. (H) Specific surface areas and average pore diameters. (I) True densities and closed-pore volumes.
图4、Structural characterizations of hard carbons: high-resolution TEM images of (A) O-1600 and (B) O-300-0.4KOH-1600. (C) XRD fitting spectra, (D) fitted Raman spectra, and (E) high-resolution C 1 s XPS spectra of samples.
图4、Electrochemical performance of electrodes. (A) Initial GCD curves measured at 20 mA g−1. (B) Specific capacity from the plateau ( 0.1 V) contributions. (C) GCD curves of the O-300-0.4KOH-1600 anode at a high mass loading. (D) Reversible specific capacity ratio of O-300-xKOH-1600 to O-1600 below 0.1 V. (E) Cycling performance at 100 mA g−1. (F) CV curves measured at various scan rates, (G) relationship between log and log , and (H) capacitive capacity contribution at different scan rates of the O-300-0.4KOH-1600 anode.v
图5、Sodium storage mechanism analysis. (A) In situ XRD patterns and (B) In situ Raman spectra of O-300-0.4KOH-1600 during the discharge−charge process at 50 mA g−1. (C) Na diffusion coefficients of O-1600 and O-300-0.4KOH-1600 during the sodiation and desodiation process in the fifth discharge/charge cycle at 20 mA g+−1. (D) Schematic diagram of the various sodium storage stages for the O-300-0.4KOH-1600 anode.
3小结
综上所述,研究提出了一种双相孔工程策略,旨在精确控制硬碳材料的孔结构和纳米结构演变,以提升锂离子电池(SIBs)的低电压平台容量。优化后的硬碳负极展现出卓越的电化学性能,包括高达389.6 mAh g^(−1)的可逆比容量、90.7%的出色循环效率(ICE),以及261.5 mAh g^(−1)的显著低电压平台容量。值得注意的是,该材料即使在高质量负载下仍能保持优异性能指标,在7.364 mg cm−2质量负载下实现377.0 mAh g−1的可逆比容量。除卓越性能外,该策略还展现出卓越的通用性,在多种生物质前驱体中均取得一致成功,且保持适合工业规模实施的条件。
文献:
来源:材料分析与应用
来源:石墨烯联盟