通电能让蘑菇长得更快吗?

360影视 动漫周边 2025-06-20 16:40 1

摘要:电刺激可以影响许多生物的生长模式、改变细胞的行为,适当的电刺激可以让一些蘑菇长得更快并增加子实体重量。那不需要这些蘑菇能够从电流获取能量来进行合成代谢。过高的电压之类会造成反效果,读者亦可考虑足以将蘑菇烧焦的大电流会如何。

电刺激可以影响许多生物的生长模式、改变细胞的行为,适当的电刺激可以让一些蘑菇长得更快并增加子实体重量。那不需要这些蘑菇能够从电流获取能量来进行合成代谢。过高的电压之类会造成反效果,读者亦可考虑足以将蘑菇烧焦的大电流会如何。

可以看看相关论文:

Takaki K, Yoshida K, Saito T, Kusaka T, Yamaguchi R, Takahashi K, Sakamoto Y. Effect of Electrical Stimulation on Fruit Body Formation in Cultivating mushrooms. Microorganisms. 2014 Feb 12;2(1):58-72. doi: 10.3390/microorganisms2010058. PMID: 27694776; PMCID: PMC5029503.

The effect of high-voltage electrical stimulation on fruit body formation in cultivating mushrooms was evaluated using a compact pulsed power generator designed and based on an inductive energy storage system. An output voltage from 50 to 130 kV with a 100 ns pulse width was used as the electrical stimulation to determine the optimum amplitude. The pulsed high voltage was applied to a sawdust-based substrate of Lyophyllum decastes and natural logs hosting Lentinula edodes , Pholiota nameko , and Naematoloma sublateritium . The experimental results showed that the fruit body formation of mushrooms increased 1.3–2.0 times in terms of the total weight. The accumulated yield of Lentinula edodes for four cultivation seasons was improved from 160 to 320 g by applying voltages of 50 or 100 kV. However, the yield was decreased from 320 to 240 g upon increasing the applied voltage from 100 to 130 kV. The yield of the other types of mushrooms showed tendencies similar to those of Lentinula edodes when voltage was applied. An optimal voltage was confirmed for efficient fruit body induction. The hypha activity was evaluated by the amount of hydrophobin release, which was mainly observed before the fruit body formation. The hydrophobin release decreased for three hours after stimulation. However, the hydrophobin release from the vegetative hyphae increased 2.3 times one day after the stimulation.

原理方面可以参考:

Adamatzky, A. On spiking behaviour of oyster fungi Pleurotus djamor. Sci Rep 8 , 7873 (2018). https:// doi.org/10.1038/s41598- 018-26007-1

Electricity is one of key factors shaping growth and development of fungi. Polarity and branching of mycelium are induced by electric fields. Hyphae are polarised in electric fields: sites of germ tube formation and branching, the direction of hyphal extension and the frequency of branching and germination could be affected by an electric field. Fungi also produce internal electrical currents and fields. Electrical current is generated by a hypha: positive current, more likely carried by protons, enters tip of a growing hypha. Current density reported is up to 0.6 μA/cm^2. Electrostatic repulsion of charged basidiospores propulses the spores from alike charged basidium. The electrical current can be involved or associated with translocation of material in pair with hydraulic pressure. There are evidences of electrical current participation in the interactions between mycelium and plant roots during formation of mycorrhiza.

提问者的自问自答提到了植物的相关试验。蘑菇是真菌、不是植物,除非你要用林奈分类的植物。这不是重点。

电合成细菌真实存在。在科幻小说里幻想电合成真菌并没有什么不可以。

铁细菌 Acidithiobacillus ferrooxidans 可以在 只有电流作为能源和电子源 的环境下利用岩石和水中溶解的二氧化碳合成有机物并增殖 [1] ,可能在深海底部支持电能生态系。 https://www.hindawi.com/journals/jac/2013/424253/fig2/Energy diagram for PMF-dependent electrolithoautotrophic carbon fixation in A. ferrooxidans. https://dx.doi.org/10.3389/fmicb.2015.00994

关于生物电,也可以看看我回答过的:

基因是如何通过单细胞层级上的编程实现生物电网络的形态发生的? ——这问题的表达方式不妥,多细胞生物的生物电模式需要大量的细胞参与。在特定的分子梯度、力学条件、温度、酸碱度、氧合程度等条件下,细胞内进行的多种生化反应会有不同的表现(例如空间分布不均匀、时间有先后、速率不一),这会改变若干分子的分布、一些细胞器的分布、一些细胞骨架和分子机器的行为,诸如此类。离子通道蛋白、离子、电子等可以参与产生电位梯度,其分布和流动可以产生多种模式。

外来电场、外来电脉冲可以影响这些模式。

来源:时空探险家

相关推荐