北京大学杨槐团队最新AFM:从仿生花到智能夹具——双重响应性驱动器的多元应用

摘要:共价有机框架(COFs)作为一类新兴的结晶多孔聚合物,在功能材料研究领域备受瞩目。其独特的结构和性能使其在多个领域展现出巨大潜力,如电池、超级电容器、催化、水处理、传感器、药物递送和气体分离等。将 COFs 负载到聚合物基质中,能够结合 COFs 的刺激响应行

共价有机框架(COFs)作为一类新兴的结晶多孔聚合物,在功能材料研究领域备受瞩目。其独特的结构和性能使其在多个领域展现出巨大潜力,如电池、超级电容器、催化、水处理、传感器、药物递送和气体分离等。将 COFs 负载到聚合物基质中,能够结合 COFs 的刺激响应行为与聚合物的形状完整性和易加工性。近期,科研人员取得了新突破,成功合成了具有光热和溶剂敏感性的卟啉 COF,并将其掺入液晶聚合物(LCPs)基质中,制备出了一种新型智能驱动器。这一研究成果由北京大学杨槐、北京科技大学王茜和江西师范大学兰若尘团队以题目为“Dual-Stimuli-Responsive Covalent Organic Framework-Liquid Crystal Polymer Smart Actuator”发表在最新一期的《Advanced Functional Materials》上。文章第一作者是北京科技大学博士研究生刘茹。

研究人员合成了具有光热和荧光的卟啉COF(POR-BHA COF),并将其引入到具有均匀分子排列的液晶聚合物(LCP)基质中。这种复合设计使得材料兼具COF的刺激响应特性和LCP的形状完整性与易加工性,成功实现了近红外光和溶剂蒸汽双重响应性。

图1. POR-BHA COF-LCP双重致动器示意图

POR-BHA COF的合成与表征

通过侧链工程在COF骨架中引入烷基链制备得到了具有光热效应和荧光的POR-BHA COF。卟啉单元的 π - 共轭效应使 POR - BHA COF 具有荧光性,通过侧链工程抑制了聚集导致的荧光猝灭(ACQ)效应增强了其荧光强度。采用FTIR、SS NMR和XPS证明POR-BHA COF的成功合成,TEM和XRD证明POR-BAH COF具备高结晶度。

Figure 1. a)Schematic representation of POR-BHA COF structure. b)PXRD pattern of POR-BHA COF. c)13C SS NMR of POR-BHA COF. d-f) XPS spectra of POR-BHA COF. d)C 1s, e)N 1s, f)O 1s. g)TEM image of POR-BHA COF particles. h)SAED pattern of POR-BHA COF. i)SEM image of POR-BHA COF particles. j)Elemental mapping images of POR-BHA COF.

POR-BHA COF在LCP驱动器中的光热效应性

在POR-BHA COF-LCP驱动器中,POR-BHA COF作为光热剂发挥关键作用。研究人员通过一系列实验验证了其在近红外光照射下的卓越性能,如快速升温、触发响应弯曲行为,且具有良好的循环耐久性。实验数据表明,在近红外光照射下,驱动器温度迅速上升,产生明显弯曲角度,并且经过多次循环后仍能保持稳定性能。

Figure 2.Actuation and characterization of POR-BHA COF-LCP actuator. a)Infrared thermal imaging and photographic analysis of the POR-BHA COF-LCP actuator, illustrating reversible deformation in response to infrared irradiation. b)Time-dependent plot of bending angle for POR-BHA COF-LCP during actuation. c)Plot of bending angles for POR-BHA COF-LCP actuator under 808 nm light over 60 cycles. d)Splayed oriented POR-BHA COF-LCP film segmented at varying angles (I)90°, (II)0°, (III)45° and (IV)135° relative to the long axis. e)Tailoring angles and response behavior of POR-BHA COF-LCP actuators under NIR exposure.

POR-BHA COF-LCP驱动器的溶剂蒸汽响应性

与传统的平行取向和垂直取向LCP薄膜不同,具有杂化取向的POR-BHA COF-LCP薄膜对溶剂蒸汽表现出显著响应。以二氯甲烷(DCM)蒸汽为例,POR-BHA COF-LCP驱动器能在短时间内发生卷曲变形,且经过多次循环后仍保持良好效果。同时,该驱动器对多种挥发性溶剂蒸汽均有响应,且响应速度和灵敏度因溶剂而异。与普通 LCP 薄膜相比,POR - BHA COF - LCP 驱动器的机械强度得到显著提升。从拉伸测试后的扫描电子显微镜(SEM)图像可以看出,LCP 薄膜断裂面光滑,呈现脆性断裂特征,而 POR - BHA COF - LCP 薄膜断裂横截面粗糙,表明其韧性增强。这意味着驱动器在频繁的驱动变形过程中,更能抵抗机械应力带来的损伤,具有更高的耐用性和可靠性。

Figure 3.Actuation and characterization of POR-BHA COF-LCP. a)Sequential photographs illustrating the reversible deformation of POR-BHA COF-LCP in response to DCM vapor exposure. b)Response behavior of POR-BHA COF-LCP actuators with varied tailoring angles under DCM vapor. c)Time-dependent plot of bending angle for POR-BHA COF-LCP during actuation. d)Plot of bending angles of POR-BHA COF-LCP actuator over 60 cycles in DCM vapor. e)Stress-strain curves of POR-BHA COF-LCP compared with LCP. f)SEM image depicting the fracture morphology of POR-BHA COF-LCP. g)SEM image of the fracture surface of LCP.

双响应POR-BHA COF-LCP驱动器

基于这一创新材料,研究人员制备了仿生花朵、近红外光控开关和智能抓手。仿生花在紫外线下呈现出玫瑰色荧光,在近红外光和DCM蒸汽的作用下能够可逆地绽放和闭合,展示了材料在智能仿生领域的应用潜力。光控开关和智能抓手则进一步体现了材料在智能控制和操作领域的实际应用价值。

Figure 4.a)UV-vis spectra of POR-BHA COF and POR-BHA COF-LCP. b)Fluorescence spectra of POR-BHA COF and POR-BHA COF-LCP. c)Photograph of POR-BHA COF powder under natural light. d)Photo of POR-BHA COF powder under 365 nm UV light. e)Photograph of bionic flower under natural light. f)Photo of bionic flower under 365 nm UV light. g)Sequential images of bionic flower under NIR light. h)Photos capturing the response behavior of the bionic flower upon DCM vapor exposure. i)Images of POR-BHA COF-LCP gripper robot under NIR light. j)Images of POR-BHA COF-LCP light-control switch under NIR light.

这种双响应智能驱动器的创新之处在于其独特的材料设计和性能表现,能够快速响应环境刺激,实现复杂变形,在柔性机器人、智能夹持系统、智能材料和传感器等领域具有广阔的应用前景,为相关领域的技术发展提供了有力支持。

论文信息:

Ru Liu, Zerui Li, Haokai Zhao, Lanying Zhang, Ruochen Lan, Qian Wang, Huai Yang,Dual-Stimuli-Responsive Covalent Organic Framework-Liquid Crystal Polymer Smart Actuator, Advanced Functional Materials

DOI: 10.1002/adfm.202418627

原文链接:

来源:小贺科技讲堂

相关推荐