杰x分享(61):概率论与数理统计(一)

360影视 2024-12-19 15:41 7

摘要:随机变量(Random Variable)是一个从样本空间到实数的函数,它将每一个可能的结果映射到一个实数值。随机变量通常用大写字母表示,如X。

分享兴趣,传播快乐,

增长见闻,留下美好。

亲爱的您,这里是LearingYard学苑!

今天小编为您带来"概率论与数理统计的学习"

欢迎您的访问!

Share interest, spread happiness,

increase knowledge, and leave beautiful.

Dear, this is the LearingYard Academy!

Today, the editor will bring you" Learning of probability theory and mathematical statistics"

Welcome to visit!

思维导图

Mind mapping

随机变量及其分布的基本概念:

random Variable

随机变量(Random Variable)是一个从样本空间到实数的函数,它将每一个可能的结果映射到一个实数值。随机变量通常用大写字母表示,如X。

A random variable is a function from the sample space to the set of real numbers, which maps each possible outcome to a real number. Random variables are usually represented by uppercase letters, such as X.

随机变量可以分为以下两大类:

Random variables can be divided into the following two major categories:

离散随机变量:只能取有限个或可数无限个值。例如,掷骰子的结果就是一个离散随机变量。

Discrete random variable: It can take a finite number or a countably infinite number of values. For example, the result of rolling a die is a discrete random variable.

连续随机变量:可以取某个区间内的任何值。例如,某城市一天的气温就是一个连续随机变量。

Continuous random variable: It can take any value within a certain interval. For example, the daily temperature in a city is a continuous random variable.

几何分布:在n次伯努利试验中,首次成功发生在第k次的概率分布。

Geometric Distribution: The probability distribution of the first success occurring on the kth trial in n Bernoulli trials.

泊松分布:在连续时间内发生某一事件的次数的概率分布,适用于事件发生率固定且独立的情况。

Poisson Distribution: The probability distribution of the number of times an event occurs in a continuous time interval, suitable for situations where the event occurrence rate is fixed and independent.

均匀分布:在某个区间内取值概率相同的分布。

Uniform Distribution: A distribution where the probability of taking values is the same within a certain interval.

正态分布:自然界中最常见的连续概率分布,呈对称的钟形曲线。

Normal Distribution: The most common continuous probability distribution in nature, characterized by a symmetric bell-shaped curve.

了解随机变量及其分布是进行数据分析、推断和决策的基础。在实际应用中,根据具体情况选择合适的随机变量模型,可以帮助我们更好地理解和预测现实世界中的随机现象。

Understanding random variables and their distributions is the basis for data analysis, inference, and decision-making. In practical applications, choosing the appropriate random variable model according to the specific situation can help us better understand and predict random phenomena in the real world.

今天的分享就到这里了。

如果您对今天的文章有独特的想法,

让我们相约明天。

祝您今天过得开心快乐!

That's all for today's sharing.

If you have a unique idea about the article,

please leave us a message,

and let us meet tomorrow.

I wish you a nice day!

参考资料:谷歌翻译、百度、B站

本文由LearningYard新学苑整理并发出,如有侵权请后台留言沟通

来源:LearningYard学苑

相关推荐