东北大学《JMCA》:煤焦油沥青衍生硬碳阳极,用于增强锂离子储存

360影视 动漫周边 2025-09-11 17:08 3

摘要:作为锂离子电池(LIBs)的主要阳极材料类别,碳基材料因其资源丰富、成本低廉且易于制备而受到广泛研究和应用。然而,碳阳极面临的主要挑战在于其循环寿命有限且倍率性能欠佳。本文,东北大学袁双 副教授、王强 教授等在《J. Mater. Chem. A》期刊发表名为

1成果简介

作为锂离子电池(LIBs)的主要阳极材料类别,碳基材料因其资源丰富、成本低廉且易于制备而受到广泛研究和应用。然而,碳阳极面临的主要挑战在于其循环寿命有限且倍率性能欠佳。本文,东北大学袁双 副教授、王强 教授等在《J. Mater. Chem. A》期刊发表名为“Stable coal tar pitch-derived hard carbon anodes with modulated oxygen functional groups for enhanced Li-ion storage”的论文,研究通过在硬质碳材料表面引入氧官能团,成功提升了锂离子电池的倍率性能与循环稳定性,其表现优于未经改性的天然多孔碳材料。

采用低成本工业副产物煤焦油沥青(CTP)作为碳源制备多孔碳(PC)。所得PC经酸碱序列处理调控其表面含氧官能团。通过傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)等原位表征技术,阐明了酸碱溶液改性碳材料孔结构及含氧官能团的机理。作为锂离子电池负极材料,其在0.1 A g⁻¹条件下经100次循环后仍展现出711.3 mA h g⁻¹的高可逆容量,在0.5 A g⁻¹条件下经550次循环后容量仍达440.4 mA h g⁻¹。此外,该PC材料应用于全电池体系时,在钠离子电池(SIBs)和锂离子电容器(LICs)中均展现出优异的循环稳定性。本研究为锂离子电池、钠离子电池及锂离子电容器的负极材料设计提供了新思路。

2图文导读

图1、 (a) Schematic illustration of the synthesis of the PC-OHH anodes; (b–d) SEM images of PC-OHH; (e) TEM image of PC-OHH; (f–i) EDS elemental mapping images of PC-OHH.

图2、(a) XRD patterns, (b) Raman spectra and (c) infrared spectra of PC-H2O, PC-H, PC-OH, PC-HOH and PC-OHH, respectively; (d–f) XPS images of PC-OHH; (g) N2 adsorption–desorption curves, (h) corresponding pore size distribution curves and (i) perform small angle scattering Guinier curves of PC-H2O, PC-H, PC-OH, PC-HOH and PC-OHH; the contact angles of (j) PC-H2O; (k) PC-HOH; (l) PC-OHH electrodes.

图3、(a and b) GCD curves at a 0.1 A g−1 current rate and CV curves at a scan rate of 0.5 mV s−1 of PC-OHH electrodes, respectively; (c) rate capacities of PC-H, PC-OH, PC-H2O, PC-HOH and PC-OHH; (d) capacities of PC-OHH compared with previously reported porous carbon anode;(e) EIS and magnification diagrams for all half-cell electrodes, respectively; (f) distribution of relaxation time (DRT) plots based on EIS; (g) performance comparison charts of PC-OHH and commercial graphite; (h) cycle diagrams for all samples at a current of 0.5Ag−1.

图4、(a) CV curves for different scanning speeds; (b) the CV contour plot of PC-OHH; (c) capacity contribution rate for different scanning speeds; (d) GITT curve for PC-OHH; (e) and (f) are the ion diffusion coefficients of PC-OHH during lithiation and delithiation processes; (g) the charge–discharge curves and (h) cycle diagrams of PC-OHH and lithium iron phosphate assembled full cell at a current of 0.1 A g−1.

图5、Electrochemical performance of PC-OHH for SIBs: (a) rate capability of PC-OHH anode at different current density; (b) long-term cycling performance of PC-OHH for 4800 cycles at 1.0 A g−1; (c) GCD curves at different cycles at 0.1 A g−1; (d and e) different capacity (dQ/dV) profiles correspond to (a).

图6、(a) The conceptual structure diagram of PC-H2O and PC-OHH hard carbon from coal tar pitch; (b) mechanism of regulating the Eadsorption on the kinetics of hard carbon; (c) the illustration of adsorption and structure of lithium ions based on different adsorption potential energy properties.

图7、(a) Schematic illustration of the LICs device (denoted as the PC-OHH//AC); (b) PC-OHH//AC rate performance at current densities of 0.1–5 A g−1; (c) galvanostatic charge/discharge profiles from 0.1 to 5 A g−1; (d) cycle performance of PC-OHH//AC; (e) radar chart of the PC-OHH//AC device in comparison with the previously reported LICs.

3小结

本研究采用熔盐法结合表面功能化工艺,以低成本CTP为碳源制备富含含氧官能团的多孔碳材料,系统研究了其形成机制、微观结构特征、孔隙特性及电化学性能。经高温KOH和KCl活化后,CTP可转化为多孔非晶碳。经HCl和/或NaOH处理有助于清除灰分并保留PC材料中的孔隙,从而实现结构重组,获得最大孔径(2.370 nm)和比表面积(2256.44 m² g⁻¹)。同时引入更多活性基团。大比表面积与非晶结构有利于电解液渗透,丰富的活性基团则为锂离子存储创造更多活性位点。

最终,经100次充放电循环后,PC-OHH的电化学性能显著提升,可逆容量达711.3 mA h g−1。即使在0.5Ag−1电流下循环550次后,仍保持440.4 mA h g−1的容量。这归因于硬质碳与电解质间适宜的电化学吸附(-1.83eV)减少了副反应,形成了均匀的固体电解质界面。此外,通过综合原位拉曼光谱、X射线衍射及密度泛函理论计算,系统探究了PC-OHH负极独特的“吸附-堆叠”锂存储机制及其卓越电化学性能的成因。同时,该材料还具有优异的钠储存性能(在1 A g−1条件下经4800次循环后容量达100.1 mAhg−1)和液态离子电池性能(在功率密度249.8 W kg−1时实现186 W h kg−1的最大能量密度)。这项工作提出了一种设计硬质碳阳极的新策略,旨在实现增强的可逆容量和在实际锂离子电池/锰酸锂电池/铅酸蓄电池中的卓越倍率性能。

文献:

DOIhttps://doi.org/10.1039/D5TA01454A

来源:材料分析与应用

来源:石墨烯联盟

相关推荐