通过提示工程为AI智能体添加推理能力

摘要:在我们之前的AI 智能体架构探索中,我们讨论了角色、指令和记忆的核心组成部分。现在,我们将深入探讨不同的提示策略如何增强智能体的推理能力,使其在解决问题的方法上更加有条理和透明。

提示策略增强了智能体的推理能力,有助于解决 AI 应用中的问题。我们将向您展示如何实现。

译自How To Add Reasoning to AI Agents via Prompt Engineering,作者 Janakiram MSV。

在我们之前的AI 智能体架构探索中,我们讨论了角色、指令和记忆的核心组成部分。现在,我们将深入探讨不同的提示策略如何增强智能体的推理能力,使其在解决问题的方法上更加有条理和透明。

有效的提示工程技术已被证明对于帮助大型语言模型(LLM) 生成更可靠、结构化和推理良好的响应至关重要。这些技术利用以下几个关键原则:

逐步分解:将复杂的任务分解成更小、更易于管理的步骤,有助于 LLM 更系统地处理信息,减少错误并提高逻辑一致性。明确的格式指令:提供清晰的输出结构指导模型组织其思路,并以更易于理解的格式呈现信息。自我反思提示:鼓励模型回顾自身的推理过程,有助于发现潜在的错误并考虑不同的视角。情境框架:提供具体的框架(例如“分析优缺点”或“考虑多种情况”)有助于模型从不同的角度处理问题。

这些技术构成了我们已实现的推理策略的基础,每种策略都旨在利用 LLM 能力的不同方面,同时保持响应的一致性和可靠性。

理解基于策略的推理

虽然基本的智能体可以直接处理任务,但高级推理需要结构化的方法来解决问题。该实现使用策略模式来定义不同的推理框架。让我们看看这些策略在我们增强的智能体架构中是如何定义的:

classExecutionStrategy(ABC): @abstractmethod defbuild_prompt(self, task: str, instruction: Optional[str] =None) -> str: """Build the prompt according to the strategy.""" pass @abstractmethod defprocess_response(self, response: str) -> str: """Process the LLM response according to the strategy.""" pass

这个抽象基类为实现各种推理策略提供了基础。每种策略都提供了一种独特的方法来:

构建解决问题的过程;分解复杂的任务;组织智能体的思维过程;以及确保对问题的全面考虑。ReAct:推理和行动

classReactStrategy(ExecutionStrategy): defbuild_prompt(self, task: str, instruction: Optional[str] =None) -> str: base_prompt="""Approach this task using the following steps: 1) Thought: Analyze what needs to be done 2) Action: Decide on the next action 3) Observation: Observe the result 4) Repeat until task is complete Follow this format for your response: Thought: [Your reasoning about the current situation] Action: [The action you decide to take] Observation: [What you observe after the action] ... (continue steps as needed) Final Answer: [Your final response to the task] Task: {task}"""

此策略确保:

思维链策略将复杂的问题分解成可管理的步骤,使推理过程更加透明和可验证。以下是它的样子:

classChainOfThoughtStrategy(ExecutionStrategy): defbuild_prompt(self, task: str, instruction: Optional[str] =None) ->str: base_prompt="""Let's solve this step by step: Task: {task} Please break down your thinking into clear steps: 1) First, ... 2) Then, ... (continue with your step-by-step reasoning) Final Answer: [Your conclusion based on the above reasoning]""" returnbase_prompt

这种方法提供:

通过复杂问题的线性进展;步骤和结论之间的清晰联系;更易于验证推理过程;以及更好地理解结论是如何得出的。反思:深度分析和自我审查

反思策略增加了一个元认知层,鼓励智能体检查自身的假设并考虑替代方法。代码如下:

classReflectionStrategy(ExecutionStrategy): defbuild_prompt(self, task: str, instruction: Optional[str] =None) ->str: base_prompt="""Complete this task using reflection: Task: {task} 1) Initial Approach: - What is your first impression of how to solve this? - What assumptions are you making? 2) Analysis: - What could go wrong with your initial approach? - What alternative approaches could you consider? 3) Refined Solution: - Based on your reflection, what is the best approach? - Why is this approach better than the alternatives?""" returnbase_prompt

与智能体架构集成

这些策略通过工厂模式和策略设置器无缝集成到智能体架构中:

classAgent: @property defstrategy(self) -> Optional[ExecutionStrategy]: returnself._strategy @strategy.setter defstrategy(self, strategy_name: str): """Set the execution strategy by name.""" self._strategy=StrategyFactory.create_strategy(strategy_name) 执行流程包含所选策略: defexecute(self, task: Optional[str] =None) -> str: iftaskisnotNone: self._task=task messages=self._build_messages try: response=client.chat.completions.create( model=self._model, messages=messages ) response_content=response.choices[0].message.content # Process response through strategy if set ifself._strategy: response_content=self._strategy.process_response(response_content)

实践应用

以下是这些策略在实践中的使用方法:

fromagentimportAgent defmain: # Initialize the agent agent=Agent("Problem Solver") # Configure the agent agent.persona="""You are an analytical problem-solving assistant. You excel at breaking down complex problems and explaining your thought process. You are thorough, logical, and clear in your explanations.""" agent.instruction="Ensure your responses are clear, detailed, and well-structured." # Define the park planning task park_planning_task=""" A city is planning to build a new park. They have the following constraints: - Budget: $2 million - Space: 5 acres - Must include: playground, walking trails, and parking - Environmental concerns: preserve existing trees - Community request: include area for community events How should they approach this project?""" # Display available reasoning strategies print("Available reasoning strategies:", agent.available_strategies) print("\n"+"="*50) # Test ReAct strategy print("\n=== Using ReAct Strategy ===") agent.strategy="ReactStrategy" agent.task=park_planning_task response=agent.execute print(f"\nTask: {park_planning_task}") print("\nResponse:") print(response) print("\n"+"="*50) # Test Chain of Thought strategy print("\n=== Using Chain of Thought Strategy ===") agent.clear_history # Clear previous interaction history agent.strategy="ChainOfThoughtStrategy" agent.task=park_planning_task response=agent.execute print(f"\nTask: {park_planning_task}") print("\nResponse:") print(response) print("\n"+"="*50) # Test Reflection strategy print("\n=== Using Reflection Strategy ===") agent.clear_history # Clear previous interaction history agent.strategy="ReflectionStrategy" agent.task=park_planning_task response=agent.execute print(f"\nTask: {park_planning_task}") print("\nResponse:") print(response) print("\n"+"="*50) if__name__=="__main__": main

此实现允许:

灵活的策略选择:针对不同类型的任务采用不同的推理方法。一致的格式:无论选择哪种策略,输出结构都一致。清晰的推理轨迹:对问题解决过程进行透明的记录。策略比较:轻松评估对同一问题的不同方法。策略推理的益处

这些推理策略的实现带来了几个关键优势:

增强的问题解决能力:多种方法来处理复杂的任务。改进的透明度:清晰地了解智能体的推理过程。更好的验证:更容易验证智能体的结论。灵活的架构:易于添加新的推理策略。

框架的完整源代码可在GitHub 仓库中找到。

未来展望

虽然这些推理策略显著增强了智能体的能力,但未来仍有几个改进方向:

基于任务类型动态选择策略;结合多种策略的混合方法;增强每个策略中的错误处理;以及基于指标的策略有效性评估。

结构化推理策略与智能体现能力的结合,创造了一个更强大、更通用的系统,能够处理复杂问题,同时保持其决策过程的透明性和可靠性。

在本系列的下一部分,我们将为智能体添加长期记忆,使它们能够暂停和恢复任务。敬请期待。

本文在云云众生()首发,欢迎大家访问。

来源:新浪财经

相关推荐