Flink State 状态原理解析

360影视 2024-12-25 09:36 3

摘要:State 用于记录 Flink 应用在运行过程中,算子的中间计算结果或者元数据信息。运行中的 Flink 应用如果需要上次计算结果进行处理的,则需要使用状态存储中间计算结果。如 Join、窗口聚合场景。

State 用于记录 Flink 应用在运行过程中,算子的中间计算结果或者元数据信息。运行中的 Flink 应用如果需要上次计算结果进行处理的,则需要使用状态存储中间计算结果。如 Join、窗口聚合场景。

Flink 应用运行中会保存状态信息到 State 对象实例中,State 对象实例通过 StateBackend 实现将相关数据存储到 FS 文件系统或者 RocksDB 数据库中。在Flink应用运行过程中,通过 checkpoint 快照定期地保存状态数据。并在 Flink 应用重启时加载Checkpoint/savepoint 来实现状态的恢复,从而让 Flink 应用继续完成之前的数据计算,实现数据精确一次向下游传递。

分为以下3类:

•基于内存的 HeapStateBackend。状态存储在内存中。

•基于 HDFS 或 OSS 的 FsStateBackend。状态存储在内存,并在做 cp(checkpoint)时存到远端。

•基于 RocksDB 的 RocksDBStateBackend。将对象序列化成二进制存在内存和本地磁盘的 RocksDB 数据中,并在 cp 时存到远端。

HeapStateBackend 和 RocksDBStateBackend 分别对应在 TaskManager 内存模型中的位置:



RocksDBStateBackend 中存储结构:

namespace: 在不同的 namespace 下存在相同名称的状态。

通过 Chandy-Lamport 分布式快照算法进行 checkpoint 完成状态数据的持久化。然后在 Flink 应用重启时读取 State 状态数据,进行运行现场的还原。

chekcpoint 分类:

•基于内存的全量 checkpoint

•HDFS 全量 checkpoint

•RocksDB 全量 checkpoint/增量 checkpoint

State 可分为 Operator State 和 Keyed State 两类。

Operator State(称为 non-keyed state)

常常存在于Source, Sink中。具体实现类例如:

•BroadcastState

例:Kafka Source 中用 OperatorState 记录 offset。

Keyed State

任何类型的 keyed state 都可以有有效期(TTL),所有状态类型都支持单元素的 TTL。 这意味着 List 元素和 Map 映射元素将独立到期。

例:SQL GroupBy/PartitionBy 后的窗口中的数据,每个 key 都有对应的 State。key 与 key 之间的 State 数据不可见。

keyed state 的具体实现类:

•ValueState

•MapState

•ListState

•AggregatingState

•ReducingState

•。。。。。

Flink State思维导图:




Keyed StateOperator State



1. Kafka Source 如何存储 OperatorState?

class FlinkKafkaConsumerBase { private transient ListState> unionOffsetStates; // state名称:"topic-partition-offset-states"// 特殊的State类型:Union State }

unionOffsetStates这个变量就是 OperatorState类型的。

2. Map算子如何存储需要累计的数据?

•ValueState/MapState/ListState/......

首先,datastream 中数据经过 keyby 之后,会划分到各个 KeyedStream 中。每个 KeyedStream 有自己的 KeyedState(如ValueState/ListState/MapState)。

其次,KeyedStream 中的数据会以 KeyGroup 方式组织在一起。KeyGroup 是 Flink 重新分发 key state 的最小单元。

最后,KeyGroup 中的数据会通过取模最大并行度的方式分散到各个 subtask 中。以下是关键源码:

KeyGroupStreamPartitioner#selectChannel(record){ K key; key = keySelector.getKey(record.getInstance.getValue); return KeyGroupRangeAssignment.assignKeyToParallelOperator( key, maxParallelism, numberOfChannels);}--KeyGroupRangeAssignment#assignKeyToParallelOperator { return computeOperatorIndexForKeyGroup(maxParallelism, parallelism, assignToKeyGroup(key, maxParallelism)); } --KeyGroupRangeAssignment#computeOperatorIndexForKeyGroup 公式:OperatorIndex = keyGroupId * parallelism / maxParallelism --KeyGroupRangeAssignment#assignToKeyGroup { return computeKeyGroupForKeyHash(key.hashCode, maxParallelism); }



分布式快照 Checkpoint 的概念,定期将 State 持久化到 外部存储系统(HDFS/OSS) 上。用户可以通过实现 CheckpointedFunction 接口来使用 operator state。通过 barrier 来对齐 checkpoint,等待 State 持久化完成(此过程参数不同也可能是异步的)。

常见 State 与 CP 相关的问题

•State 状态过大。现象为多个算子或单个算子多个 subtask 做 checkpoint 慢,可导致 CP 对齐时间长,严重时会导致 CP 超时。

•数据倾斜导致某个 subtask 处理不及时。现象为单个算子少数几个 subtask 做 checkpoint 慢,导致 CP 对齐时间长。严重时会导致 CP 超时。

•大作业(并行度搞)频繁做 CP,会频繁上传小文件,导致 HDFS 集群小文件过多。

常用解决措施:调大托管内存大小。

来源:京东云开发者

相关推荐