摘要:对于硬件工程师而言,PCB 设计水平直接影响电子产品的性能与稳定性。在之前的系列文章中,我们探讨了 PCB 设计的众多关键要点,本文将继续深入,聚焦一些容易被忽视却又至关重要的方面,助力硬件工程师进一步提升 PCB 设计技能。
对于硬件工程师而言,PCB 设计水平直接影响电子产品的性能与稳定性。在之前的系列文章中,我们探讨了 PCB 设计的众多关键要点,本文将继续深入,聚焦一些容易被忽视却又至关重要的方面,助力硬件工程师进一步提升 PCB 设计技能。
一、布局设计
①高功率发热元件是否放置在靠近 PCB 边缘或通风口等易于散热的区域?可利用 CFD(计算流体动力学)模拟软件,分析不同放置位置的空气流动与散热效果,从而确定最佳位置。②发热元件之间是否保持足够的间距以避免热量聚集?可依据热仿真分析结果,设定合适的间距值,保证热量有效散发。发热器件应尽可能分散布置,使 得单板表面热耗均匀,有利于散热。③敏感元件是否远离发热元件?通过热影响区域分析,确定敏感元件与发热元件之间的安全距离。不要使热敏感器件或功耗大的器 件彼此靠近放置,使得热敏感器件 远离高温发热器件,常见的热敏感 的器件包括晶振、内存、CPU等。要把热敏感元器件安排在最冷区域。对自然对流冷却设备,如果外壳密封,要把热敏感器件置于底部,其它元器件置于上部;如果外 壳不密封,要把热敏感器件置于冷 空气的入口处。对强迫对流冷却设 备,可以把热敏感元器件置于气流入口处。④ 参考板内流速分布特点进行器件布局设计,在特定风道内 面积较大的单板表面流速不可避免存在不均匀问题,流速大的 区域有利于散热,充分考虑这一因素进行布局设计将会使单板 获得较优良的散热设计。⑤对于通过PWB散热的器件,由于依靠的是PWB的整体面积来散热,因此即使器件处于局部风速低的区域内,也并不一定会有散热问题,在进行充分热分析验证的基础上,没有必要片 面要求单板表面风速均匀。⑥当沿着气流来流方向布置的一系列器件都需要加散热器时,器件尽量 沿着气流方向错列布置,可以降低上下游器件相互间的影响。如无法交错 排列,也需要避免将高大的元器件(结构件等)放在高发热元器件的上方。
⑦对于安装散热器的器件,空气流经该器件时会产生绕流,对该器件两 侧的器件会起到换热系数强化作用;对该器件下游的器件,换热系数可能会加强,也可能会减弱,因此对于被散热器遮挡的器件需要给出特别关注。 ⑧注意单板风阻均匀化的问题:单板上器件尽量分散均匀布置,避免沿 风道方向留有较大的空域,从而影响单板元器件的整体散热效果。
在电子设备运行时,芯片和其他元件会产生热量,如果热量不能有效散发,会导致元件性能下降甚至损坏。在布局时,要将发热量大的元件(如功率芯片、大功率电阻等)放置在利于散热的位置,比如靠近进风口,或者风速较大的位置。同时,要避免将对温度敏感的元件(如晶体振荡器、某些传感器)放置在发热元件附近,防止其性能受温度影响。
例如,在设计一款工业控制板时,将功率 MOSFET 集中放置在 PCB 边缘,并在其下方设置大面积的散热铜箔,同时在铜箔上添加过孔,形成 “热过孔”,有效增强了散热效果。通过这种方式,该控制板在长时间高负载运行下,关键元件的温度仍能保持在合理范围内,确保了系统的稳定性。此外,稳定的温度环境对信号完整性也有积极影响。过热可能导致元件参数漂移,进而影响信号传输的准确性和稳定性 ,良好的热管理能为信号的稳定传输提供基础条件。
2、不同封装的器件采用合适的散热设计
好的单板散热方案必须针对器件的散热特性进行设计! THD器件的管脚数量少,焊接后封装也不紧贴单板,与单板的热关联性很 小,该类器件的热量都是通过器件表面散到环境中。因此早期的器件散热研究 比较注重于器件表面的空气流动,以期获得比较高的器件表面对流换热系数。
SMD器件集成度高,热耗也大,是散热关注的重点。该类器件的管脚/焊 球数量多,焊接后封装也紧贴单板,与单板建立起紧密的换热联系,散热方案 必须从单板整体散热的角度进行分析。SMD器件针对散热需求也出现了多种强 化散热的封装,这些封装的种类繁多,但从散热角度进行归纳分类,以引脚封 装和焊球封装最为典型,其它封装的散热特性可以参考这两种类推。
PGA类的针状管脚器件基本忽略单板散热,以表面散热为主,例如CPU等。
【设计经验】共用散热器,需要考虑器件公差及导热硅胶的厚度。
EGPU单板,公司热设计的仿真结论温度比较高,而使用相同的仿真模型,Intel散热仿真模型的温度比较低,经过下午与Intel讨论,分析原因是Intel建立的仿真模型,CPU与散热器的导热胶厚度为
1、能否达到
2、如何能够达到
三、PCB辅助散热
对于电子设备来说,工作时都会产生一定的热量,从而使设备内部温度迅速上升,如果不及时将该热量散发出去,设备就会持续的升温,器件就会因过热而失效,电子设备的可靠性能就会下降。因此,对电路板进行很好的散热处理是非常重要的。
1 、加散热铜箔和采用大面积电源地铜箔。
根据上图可以看到:连接铜皮的面积越大,结温越低
根据上图,可以看出,覆铜面积越大,结温越低。
2、热过孔
热过孔能有效的降低器件结温,提高单板厚度方向温度的均匀性,为在 PCB 背面采取其他散热方式提供了可能。通过仿真发现,与无热过孔相比,在器件热功耗为 2.5W 、间距 1mm 、中心设计 6x6 的热过孔能使结温降低 4.8°C 左右,而 PCB 的顶面与底面的温差由原来的 21°C 减低到 5°C 。热过孔阵列改为 4x4 后,器件的结温与 6x6 相比升高了 2.2°C ,值得关注。
3、IC背面露铜,减小铜皮与空气之间的热阻
在热管理方面,行业标准如 IPC-2221B《印制板设计通用标准》虽未专门针对热管理进行详细规定,但在整体设计原则中强调了电气、机械和热性能之间的平衡 。工程师在设计时应参考该标准,确保热管理措施不会对 PCB 的其他性能产生负面影响。比如,大面积散热铜箔的设计不能影响 PCB 的机械强度,热过孔的设置要考虑对其他线路和元件的影响。
四、热阻分析
是否对 PCB 整体热阻进行了计算和分析?
关键路径的热阻是否在可接受范围内?
热量传递过程中,温度差是过程的动力,好象电学中的电压,换热 量是被传递的量,好像电学中的电流,因而上式中的分母可以用电学中 的电阻概念来理解成导热过程的阻力,称为热阻(thermal resistance), 单位为℃/W, 其物理意义就是传递1W 的热量需要多少度温差。在热设计中将热阻标记为R或θ。δ/(λA)是导热热阻,1/αA是对流换热热阻。器件的资料中一般都会提供器件的Rjc和Rja热阻,Rjc是器件的结到壳的导热热阻;Rja是器件的结到壳导热热阻和壳与外界环境的对流换热热阻之和。这些热阻参数可以根据实验测试获得,也可以根据详细的器件内部结构计算得到。根据这些热阻参数和器件的热耗,就可以计算得到器件的结温。
两个名义上相接触的固体表面, 实际上接触仅发生在一些离散的面积 元上,如右图所示,在未接触的界面 之间的间隙中常充满了空气,热量将 以导热和辐射的方式穿过该间隙层, 与理想中真正完全接触相比,这种附 加的热传递阻力称为接触热阻。降低 接触热阻的方法主要是增加接触压力 和增加界面材料(如硅脂)填充界面 间的空气。在涉及热传导时,一定不 能忽视接触热阻的影响,需要根据应 用情况选择合适的导热界面材料,如 导热脂、导热膜、导热垫等。
我们可以优化:
导热材料的选型、涂抹或者粘贴的工艺、优化厚度、增加气流、改善散热器、降低热源功率等等。
总之,PCB 设计是一个综合性的工程,需要硬件工程师在布局、布线、热管理。通过遵循相关行业标准,不断学习和实践,积累经验,解决实际设计中遇到的各种问题,才能逐步提升 PCB 设计技能,打造出高性能、高可靠性的电子产品。
PCB设计系列文章
【1】兴趣驱动热爱
【2】硬件工程师要不要自己画PCB
【3】PCB走线应该走多长?
【4】PCB走线应该走多宽?
【5】PCB的内电层
【6】过孔
【7】PCB能不能走锐角和直角?
【8】死铜是否要保留?(PCB孤岛)
【9】焊盘上是否可以打过孔?
【10】PCB材料、FR4到底是指什么材料?
【11】阻焊层,绿油为什么多是绿色
【12】钢网
【13】预布局
【14】PCB布局、布线 的要领
【15】跨分割走线
【16】信号的反射
【17】脏信号
【18】沉金、镀金、喷锡等表面处理工艺
【19】线距
【20】电容的摆放位置
【21】串扰
【22】PCB的飞针测试
【23】FPC概述及仿真
【24】为什么PCB变形弯曲?如何解决?
【25】一文搞懂“特征阻抗”
【26】PCB的叠层设计
【27】高速电路PCB回流路径
【28】PCB设计中电源处理与平面分割
【29】锯齿形的PCB走线——Tabbed routing
【30】PCB的介质损耗角是什么“∠”?
【31】PCB铜箔粗糙度对高速信号的影响
【32】晶振为什么不能放置在PCB边缘?
【33】什么是高速信号?
【34】什么是传输线
【35】预加重、去加重和均衡
【36】如何利用PCB散热
【37】PCB设计中的“stub”
【38】纠结:走线之间的GND保护地线要还是不要?
【39】PCB 覆铜
【40】进行 PCB 设计时应该遵循的规则
【41】PCB叠层设计中的“假八层”
【42】除了带状线、微带线,还有“共面波导”
【43】PCB焊盘设计工艺的相关参数
【44】PCB设计时,板边为什么要打地孔
【45】更容易散热的PCB:铝基板
【46】为什么要把参考平面掏空?
【47】晶振的PCB设计
【48】用EMC思想来设计DC/DC电源的PCB
【49】PCB拐弯,不一定是圆弧走线最好
【50】为什么要把过孔堵上“导电孔塞孔工艺”
【51】电源PCB布局布线要点
【52】PCB板上的Mark点
【53】用ADS仿真高速信号跨分割
【54】刚柔板(软硬结合板)
【55】数模混合的PCB设计
【56】PCB设计中电容的摆放
【57】PCB设计中过孔残桩的影响
【58】去耦电容在PCB设计中的布放与走线
【59】PCB设计checklist:结构
【60】PCB设计checklist:电源
【61】PCB设计checklist:布线
【62】PCB设计checklist:高速数字信号
【63】工艺边
【64】PCB设计:金手指
【65】PCB设计:差分线
【66】DDR4的PCB设计及仿真
【67】电路板设计中要考虑的PCB材料特性
【68】什么是好的“PDN”的PCB设计
【69】PCB详细布局、布线设计
【70】USB2.0 PCB布线
【71】反激式开关电源PCB设计要点
【72】PCB设计,焊盘与过孔工艺规范
【73】PCB哪些因素影响损耗
【74】PCB 过孔对散热的影响
【75】如何在PCB设计阶段规避焊接的问题
【76】为什么有时在PCB走线上串个电阻?有什么用?
【77】PCB爆板
【78】PCB设计不好造成的信号完整性问题
【79】PCB设计:绕等长
【80】电子产品的结构设计
【81】PCB的安规设计
【82】PCB的可生产性设计(DFM)
【83】PCB设计的EMC考虑
【84】高速数字电路PCB“接地”要点
【85】跨分割,信号能有多坏
【86】如何确保PCBA的质量--常用的14种测试方法
【87】DC/DC电源PCB设计中,一定要把这个点设计好
【88】铺铜的间距有什么要求?
【89】开关电源的输入电容的PCB设计技巧
【90】PCB设计抗干扰有哪些方法?
【91】PCB叠层设计
【92】为什么PCB线路板要把过孔堵上?
【93】在PCB生产过程中,是如何控制走线阻抗的?
【94】时域反射计(TDR):硬件工程师的秘密武器
来源:硬件十万个为什么