摘要:它就是在分类之前通过目视判读和野外调查,对遥感图像上某些样区中影像地物的类别属性有了先验知识,对每一种类别选取一定数量的训练样本,计算机计算每种训练样区的统计或其他信息,同时用这些种子类别对判决函数进行训练,使其符合于对各种子类别分类的要求,随后用训练好的判决
江苏赛维地质测绘有限公司
监督分类,又称训练分类法,用被确认类别的样本像元去识别其他未知类别像元的过程。
它就是在分类之前通过目视判读和野外调查,对遥感图像上某些样区中影像地物的类别属性有了先验知识,对每一种类别选取一定数量的训练样本,计算机计算每种训练样区的统计或其他信息,同时用这些种子类别对判决函数进行训练,使其符合于对各种子类别分类的要求,随后用训练好的判决函数去对其他待分数据进行分类。使每个像元和训练样本作比较,按不同的规则将其划分到和其最相似的样本类,以此完成对整个图像的分类。
遥感影像的监督分类一般包括以下 6 个步骤,如下图所示:
本文以 Landsat tm5 数据 Can_tmr.img 为数据源,需要数据进行联系的朋友,可以私信大水牛哦~
第一步:类别定义/特征判别
根据分类目的、影像数据自身的特征和分类区收集的信息确定分类系统;对影像进行特征判断,评价图像质量,决定是否需要进行影像增强等预处理。这个过程主要是一个目视查看的过程,为后面样本的选择打下基础。
启动 ENVI,打开待分类数据:can_tmr.img。以 R:TM Band 5,G: TM Band 4,B:TM Band 3 波段组合显示。
通过目视可分辨六类地物:林地、草地/灌木、耕地、裸地、沙地、其他六类。
第二步:样本选择
(1) 在图层管理器 Layer Manager 中,can_tmr.img 图层上右键,选择“New Region Of Interest”,打开 Region of Interest (ROI) Tool 面板,下面学习利用选择样本。
1) 在 Region of Interest (ROI) Tool 面板上,设置以下参数:
2) 默认 ROIs 绘制类型为多边形,在影像上辨别林地区域并单击鼠标左键开始绘制多边形样本,一个多边形绘制结束后,双击鼠标左键或者点击鼠标右键,选择 Complete and Accept Polygon,完成一个多边形样本的选择;
3) 同样方法,在图像别的区域绘制其他样本,样本尽量均匀分布在整个图像上;
4) 这样就为林地选好了训练样本。
注:1、如果要对某个样本进行编辑,可将鼠标移到样本上点击右键,选择 Edit record 是修改样本,点击 Delete record 是删除样本。
2、一个样本 ROI 里面可以包含 n 个多边形或者其他形状的记录(record)。
3、如果不小心关闭了 Region of Interest (ROI) Tool 面板,可在图层管理器 Layer Manager上的某一类样本(感兴趣区)双击鼠标。
(2)在图像上右键选择 New ROI,或者在 Region of Interest (ROI) Tool 面板上,选择
工具。重复“林地”样本选择的方法,分别为草地/灌木、耕地、裸地、沙地、其他 5 类选择样本;
(3)如下图为选好好的样本。
(4)计算样本的可分离性。在 Region of Interest (ROI) Tool 面板上,选择 Option>Compute ROI Separability,在 Choose ROIs 面板,将几类样本都打勾,点击 OK;
(5)表示各个样本类型之间的可分离性,用Jeffries-Matusita, Transformed Divergence 参数表示,这两个参数的值在0~2.0 之间,大于1.9 说明样本之间可分离性好,属于合格样本;小于1.8,需要编辑样本或者重新选择样本;小于1,考虑将两类样本合成一类样本。
注:1、在图层管理器 Layer Manager 中,可以选择需要修改的训练样本。
2、在Region of Interest (ROI) Tool 面板上,选择Options > Merge (Union/Intersection) ROIs,在 Merge ROIs 面板中,选择需要合并的类别,勾选 Delete Input ROIs。
(4)在图层管理器中,选择 Region of interest,点击右键,save as,保存为.xml格式的样本文件。
注:1、早期版本的感兴趣文件格式为.roi,新版本的为.xml,新版本完全兼容.roi文件,在Region of Interest (ROI) Tool面板上,选择 File>Open 打开.xml或.roi文件。
2、新版本的.xml 样本文件(感兴趣区文件)可以通过,File>Export>Export to Classic 菜单保存为.roi 文件。
第三步:分类器选择
根据分类的复杂度、精度需求等确定哪一种分类器。目前ENVI的监督分类可分为基于传统统计分析学的,包括平行六面体、最小距离、马氏距离、最大似然,基于神经网络的,基于模式识别,包括支持向量机、模糊分类等,针对高光谱有波谱角(SAM),光谱信息散度,二进制编码。下面是几种分类器的简单描述,大家可以简单了解一下。
l 平行六面体(Parallelepiped)
根据训练样本的亮度值形成一个n维的平行六面体数据空间,其他像元的光谱值如果落在平行六面体任何一个训练样本所对应的区域,就被划分其对应的类别中。
l 最小距离(Minimum Distance)
利用训练样本数据计算出每一类的均值向量和标准差向量,然后以均值向量作为该类在特征空间中的中心位置,计算输入图像中每个像元到各类中心的距离,到哪一类中心的距离最小,该像元就归入到哪一类。
l 马氏距离(Mahalanobis Distance)
计算输入图像到各训练样本的协方差距离(一种有效的计算两个未知样本集的相似度的方法),最终技术协方差距离最小的,即为此类别。
l 最大似然(Maximum Likelihood)
假设每一个波段的每一类统计都呈正态分布,计算给定像元属于某一训练样本的似然度,像元最终被归并到似然度最大的一类当中。
l 神经网络(Neural Net)
指用计算机模拟人脑的结构,用许多小的处理单元模拟生物的神经元,用算法实现人脑的识别、记忆、思考过程。
l 支持向量机(Support Vector Machine)
支持向量机分类(Support Vector Machine 或 SVM)是一种建立在统计学习理论(Statistical Learning Theory 或 SLT)基础上的机器学习方法。SVM 可以自动寻找那些对分类有较大区分能力的支持向量,由此构造出分类器,可以将类与类之间的间隔最大化,因而有较好的推广性和较高的分类准确率。
l 波谱角(Spectral Angle Mapper)
它是在 N 维空间将像元与参照波谱进行匹配,通过计算波谱间的相似度,之后对波谱之间相似度进行角度的对比,较小的角度表示更大的相似度。
监督分类到这里还没有完成,我们下篇继续!
来源:爱聊新科技