Nature丨天然核小体自带指导三维基因组组装的信息
细胞核基因组主要分为两大区域:基因丰富且相对开放的常染色质,以及基因稀少且相对致密的异染色质。随着Hi-C染色质构象捕获和染色质追踪等技术的出现,基因组的复杂层级组织结构正逐渐被揭示。每条染色体在细胞核内占据独立区域,其基因组可以人为划分为两个区室结构——A/
细胞核基因组主要分为两大区域:基因丰富且相对开放的常染色质,以及基因稀少且相对致密的异染色质。随着Hi-C染色质构象捕获和染色质追踪等技术的出现,基因组的复杂层级组织结构正逐渐被揭示。每条染色体在细胞核内占据独立区域,其基因组可以人为划分为两个区室结构——A/
清华大学生命学院陈柱成团队发现人源染色质重塑蛋白 SMARCAD1 对亚核小体的偏好性,并与郗乔然团队合作验证了 SMARCAD1 这一功能对小鼠胚胎干细胞干性维持的重要作用。
转座酶切割:蛋白A/G-Tn5融合酶结合抗体后,激活的Tn5转座酶在目标位点附近同时完成DNA双链切割和测序接头插入,产生约300-500bp的靶向片段。
核小体是 真核生物 染色质的基本单元。经典的核小体由 147 bp DNA 缠绕组蛋白八聚体形成, 其中 组蛋白八聚体 由 两 拷贝 H2A-H2B 二聚体和 一拷贝 ( H3-H4 ) 2 四聚体组成。 染色质 结构高度动态 可塑 , 核小体在复制,转录,
在真核细胞中,DNA与蛋白质的相互作用构成了基因组功能调控的核心基础。DNA并非以裸露的线性分子形式存在,而是与组蛋白、RNA以及大量染色质相关蛋白共同构成高度组织化的三维空间结构。这种复杂的核内环境使得只有特定蛋白质能够在特定时间点直接接触DNA,参与调控基
染色质的空间组织结构是维持基因组稳定性、实现基因表达精准调控关键环节。在植物中,已有诸多参与调控关键农艺性状的远程调控元件被鉴定。然而,现有三维染色质构象捕获技术(如Hi-C, ChIA-PET, HiChiP和OCEAN-C等)仍难以在低成本条件下无偏好性地
编码转录因子 c-Myc 的 MYC 基因 是 最为常见的 异常激活 的原癌基因 之一 , 其 基因扩增 发生 在超过 50%的人类癌症中。传统观点认为MYC 蛋白 通过结合 启动子 区域 DNA 以调控 下游 靶 基因的转录。近 年来的 研究 表明 , 部分
这种方法是最基础的免疫沉淀技术,通常使用抗体与蛋白A/G珠子结合的形式。该方法的优点在于操作简便,适用于大多数实验室环境。但需要注意的是,选择合适的抗体和珠子是成功的关键。
为解决 3D 基因组染色质拓扑结构调控因子研究受限,缺乏高效筛选技术的问题,研究人员开展了名为 Perturb-tracing 的技术研究。他们发现众多新调控因子,研究成果发表在《Nature Methods》上明确其多尺度作用及与已知机制关联,还揭示染色质压
解锁 naturemethods 基因组 tad 染色质 2025-05-25 10:51 6
基因组的三维空间结构调控是近年来分子生物学领域的重要研究方向。在两侧对称动物(如脊椎动物和昆虫)中,大量研究表明染色质环(chromatin loops)在基因表达调控中发挥着核心作用。这种三维结构通过将基因组上相距遥远的调控元件(如增强子)与目标基因的启动子
我们身体里形态和功能千差万别的细胞,从思考的大脑神经元到跳动的心脏肌肉细胞,都携带着同一套DNA密码本?如果基因组序列是生命的蓝图,那究竟是什么力量决定了每个细胞会“阅读”和执行蓝图中的哪些部分,最终构建出如此多姿多彩的生命?答案不仅藏在DNA的线性序列里,更
2025年4月16日,深圳大学医学部基础医学院及卡尔森国际肿瘤中心朱卫国教授团队在《自然》(Nature)杂志在线发表了题为“Histone H1 deamidation facilitates chromatin relaxation for DNA rep
双链断裂(DSB)是最严重的 DNA 损伤形式之一,会导致基因组不稳定。它们的有效修复需要增加染色质的可及性,以促进修复因子的募集。染色质快速打开的最明确机制涉及乙酰化修饰和 PARylation 修饰,这两种机制会降低 DNA-核小体界面的电荷。然而,在 D
DNA缠绕组蛋白八聚体形成的核小体是染色质的基本单元。染色质重塑蛋白(chromatin remodeler)利用ATP水解的能量移动核小体,从而调节染色质结构与基因表达。染色质重塑蛋白包含4个主要家族:SWI/SNF,ISWI,CHD和INO80,它们具有多
ATAC-seq(Assay for Transposase-Accessible Chromatin Sequencing,转座酶染色质可及性测序),可绘制全基因组范围内染色质可及性图谱,该技术可以识别基因调控区域(如启动子、增强子等),从染色质开放性维度揭
真核生物基因组中的转录状态主要包括转录激活和沉默。转录沉默通常与基因组中的异染色质结构域相关,该区域往往富集了高水平的DNA甲基化和抑制性组蛋白修饰,并显示出高度紧凑的染色质状态,最终导致RNA聚合酶无法进入,实现转录抑制。相反,转录激活主要发生在更开放、松散
转录因子(TF) 通过以序列特异性方式与DNA结合并招募效应蛋白来调节基因表达,是基因表达调控中的关键因子。尽管它们起着关键作用,但许多TF的调控靶点和作用机制仍然未知。对单个转录因子的表征扩大了对基因调控的理解。ENCODE等项目展示了TF在全基因组的结合,
ChIP(染色质免疫沉淀)是一种超厉害的技术,能帮我们研究蛋白质和DNA在体内的相互作用。简单来说,它就像是给细胞里的蛋白质和DNA拍个“合照”,看看它们是不是真的“在一起”。这对于研究基因表达、组蛋白修饰、DNA复制和损伤修复等超重要哦!
本期与我们用声音见面的是重庆医科大学附属第二医院刘川教授,他将与大家一同分享一项发表于《Science》杂志(影响因子:44.7)的一项有关基于染色质图谱的去势抵抗性前列腺癌分型提示潜在治疗靶点的研究。
染色体结构维持复合物(Structural Maintenance of Chromosomes complexes,SMC)——包括粘连蛋白(cohesin)和凝缩蛋白(condensin)在真核生物基因组动态折叠模式的调控中发挥核心作用。在 G1 期,co