解析活性中心的本质及DFT 计算应用与未来突破方向
活性位点是催化反应中直接参与底物结合与过渡态稳定的微观区域。通过DFT计算可解析其几何结构、电子特性及反应路径,如FeN4位点通过动态优化显著提升氧还原活性。
活性位点是催化反应中直接参与底物结合与过渡态稳定的微观区域。通过DFT计算可解析其几何结构、电子特性及反应路径,如FeN4位点通过动态优化显著提升氧还原活性。
单原子纳米岛催化剂(SANIs)是一种新型的“原子纳米”异质催化系统,其核心特征是通过将金属单原子锚定在纳米载体上,形成独特的“一岛一原子”结构,从而实现高效催化和稳定性。这种结构具有以下定义和结构特征:
根据催化剂类型不同,活性位点的形式也有所变化,如金属催化剂、酸碱催化剂和氧化物催化剂等,它们的活性位点各具特征,对催化过程起着至关重要的作用。
文章首先明确了过渡态的定义,即化学反应路径中能量最高的点,对应最关键、最难跨越的能垒。随后指出,过渡态计算适用于单步、机理清晰的基元反应,如氢气分解、CO₂加氢等反应,而对多步复杂反应或路径不明的反应体系并不适用。
在DFT计算中,零点能校正提升自由能(ΔG)、晶格常数及过渡态能垒的精度,例如氢转移步骤能垒修正达10-20 kcal/mol。实例显示,锰催化C-H活化中ZPE修正降低活化能8.2 kcal/mol,与实验吻合。
在DFT计算中,零点能校正提升自由能(ΔG)、晶格常数及过渡态能垒的精度,例如氢转移步骤能垒修正达10-20 kcal/mol。实例显示,锰催化C-H活化中ZPE修正降低活化能8.2 kcal/mol,与实验吻合。
限域催化(Confined Catalysis)是指通过纳米尺度的空间或界面约束环境(如碳纳米管空腔、二维材料层间、分子筛孔道等),调变催化体系的电子能态和反应微环境,从而精准调控催化活性和选择性的一种策略。其核心机制在于限域环境对催化剂电子结构的动态调变,具
单原子纳米岛催化剂(SANIs)是一种新型的“原子纳米”异质催化系统,其核心特征是通过将金属单原子锚定在纳米载体上,形成独特的“一岛一原子”结构,从而实现高效催化和稳定性。这种结构具有以下定义和结构特征:
限域催化(Confined Catalysis)是指通过纳米尺度的空间或界面约束环境(如碳纳米管空腔、二维材料层间、分子筛孔道等),调变催化体系的电子能态和反应微环境,从而精准调控催化活性和选择性的一种策略。
随着能源需求的不断增长和可持续发展的要求,理论计算在能源领域的应用日益广泛且重要。从材料的电子结构、吸附能计算到离子扩散和应力模拟,理论计算为能源材料的优化和性能提升提供了重要指导。它不仅能够帮助研究人员深入理解能源转化与存储过程中的微观机制,还能在材料设计、
想要获得文献中的台阶图吗?想要获得文献中的过渡态能垒吗?想要获得各种分子在晶体表面、二维材料、一维材料表面活性位点的吸附构型与吸附能吗?想要将常规的三维催化剂结构转变为可用于计算的表面与二维结构吗?以上问题都不难,5天吸附催化计算培训轻松解决!本次课程由华算科
在钴(Co)基催化剂中,电子自旋状态的调节是一种分子激活的有效策略。由于长期秩序的破坏和电子结构的改变,晶体与非晶界面通常表现出独特的催化性能。然而,界面处的分子激活和自旋态的机制仍然难以捉摸。
四氟化碳(CF4)是一种常见的全氟化合物(PFC),具有极高的温室效应,其温室气体效能是二氧化碳的7390倍,且在大气中的寿命可超过5万年。由于其稳定的分子结构,CF4被广泛用于工业领域,例如制冷剂、药物和农用化学品。然而,这种化学稳定性使CF4分解极为困难,
四氟化碳(CF4)是一种常见的全氟化合物(PFC),具有极高的温室效应,其温室气体效能是二氧化碳的7390倍,且在大气中的寿命可超过5万年。由于其稳定的分子结构,CF4被广泛用于工业领域,例如制冷剂、药物和农用化学品。然而,这种化学稳定性使CF4分解极为困难,