强化学习怎么入门好?
最近在做一个跟强化学习有关的项目,在csdn等网站上了解了MDP,值函数等基本知识,接着学习Q学习、Sarsa等算法,但是感觉有些囫囵吞枣,有没有比较好的入门方法打好基础呢
最近在做一个跟强化学习有关的项目,在csdn等网站上了解了MDP,值函数等基本知识,接着学习Q学习、Sarsa等算法,但是感觉有些囫囵吞枣,有没有比较好的入门方法打好基础呢
作为 AReaL 里程碑版本 AReaL-boba 的重磅升级,AReaL-boba² (正式全名:A-ReaL-double-boba) 坚持 boba 系列 “ 全面开源、极速训练、深度可定制 ” 的开发理念,再次加量:除了更全的功能和更详细的文档说明,更
作为 AReaL 里程碑版本 AReaL-boba 的重磅升级,AReaL-boba² (正式全名:A-ReaL-double-boba) 坚持 boba 系列 “全面开源、极速训练、深度可定制” 的开发理念,再次加量:除了更全的功能和更详细的文档说明,更以全
作为 AReaL 里程碑版本 AReaL-boba 的重磅升级,AReaL-boba² (正式全名:A-ReaL-double-boba) 坚持 boba 系列 “全面开源、极速训练、深度可定制” 的开发理念,再次加量:除了更全的功能和更详细的文档说明,更以全
作为 AReaL 里程碑版本 AReaL-boba 的重磅升级,AReaL-boba² (正式全名:A-ReaL-double-boba) 坚持 boba 系列 “全面开源、极速训练、深度可定制” 的开发理念,再次加量:除了更全的功能和更详细的文档说明,更以全
多模态奖励模型(MRMs)在提升多模态大语言模型(MLLMs)的表现中起着至关重要的作用,在训练阶段可以提供稳定的 reward,评估阶段可以选择更好的 sample 结果,甚至单独作为 evaluator。尽管近期强化学习(RL)在传统视觉任务和多模态推理任
探索强化学习如何塑造游戏和虚拟世界中的智能NPC,本文深入解析了通过试错与进化培育出具有自主决策能力的虚拟伙伴的过程及其对AI产品经理的启示。
探索强化学习如何塑造游戏和虚拟世界中的智能NPC,本文深入解析了通过试错与进化培育出具有自主决策能力的虚拟伙伴的过程及其对AI产品经理的启示。
漏洞: 把laji桶里的laji倒出来再捡回去,也能得分!作弊: AI疯狂倒laji→捡laji→倒laji→捡laji……分数刷到爆表!结果: 房间更乱了,但AI觉得自己是“满分员工”,而你气到吐血!