多功能轻质石墨烯/PI复合气凝胶,用于红外雷达声学兼容隐身

360影视 国产动漫 2025-06-05 17:01 2

摘要:由于红外线和雷达隐形所需的特性相互冲突,而且雷达波和声波之间的能量损耗机制也存在差异,因此红外线-雷达-声波兼容材料的开发面临诸多挑战。本文,安徽工业大学顾未华 副教授等研究人员在 《Journal of Materials Science & Technol

1成果简介

由于红外线和雷达隐形所需的特性相互冲突,而且雷达波和声波之间的能量损耗机制也存在差异,因此红外线-雷达-声波兼容材料的开发面临诸多挑战。本文,安徽工业大学顾未华 副教授等研究人员在 《Journal of Materials Science & Technology》期刊发表名为“Multifunctional lightweight rGO/polyimide hybrid aerogels for highly efficient infrared-radar-acoustic compatibility via heterogeneous interface engineering strategies”的论文,研究提出提出了设计轻质混合气凝胶的异质界面工程策略。将还原氧化石墨烯(rGO)作为功能组分,水溶性聚酰亚胺作为机械增强基体,旨在整合双重组分和二维/三维多重异质界面的优势

该样品具有出色的机械弹性、隔热性能和红外-雷达-声学兼容隐身性能。在 3-5和8-14μm 两个大气窗口波段,其红外发射率分别降低了0.311和0.024。最小反射损耗(RLmin)值可达 -48.86 dB,有效吸收带宽可覆盖整个测试的X波段。通过CST模拟2-30 GHz 范围内的雷达隐身性能,RLmin 值可达到-48.85 dB,最佳吸收带宽可达10.19 GHz。此外,在 63 Hz 的低频下,该材料的最大吸声系数达到了 0.457。这项研究为开发具有红外-雷达-声学兼容性的高性能隐形材料提供了一种创新方法。

2图文导读

图 1. (a) PI 前体的合成过程。(b) 制备 rGO/PI 气凝胶的示意图。所有样品(c)煅烧前和(d)煅烧后的数码照片。(e)煅烧前后所有样品的密度信息。(f) 所有样品的拉曼光谱。(g) PI 和 (h) S3 的 XPS C 1s 光谱。

图2. FE-SEM images of (a) S1, (b) S2, (c) S3, (d) S4, (e) S5, and (f) PI. Inset in (c): TEM image of rGO nanoflake. (g) Macro-pore porosity variation with different rGO content before and after calcination. (h) Nitrogen adsorption-desorption isotherms and meso-pore size distribution curves of S3. Digital photograph of counterpoise with different weights placed on (i) PI and (j) S3. (k) Water contact angles of GO, S3, and PI, separately. (l) TG and DTG curves of S1, S2, S3, S4, S5, and PI, respectively.

图3. (a) Curves of compressive stress vs. compressive strain of PI and S1/S2/S3/S4/S5 hybrid aerogels with 50% strain. The stress-strain (σε) curves of (b) PI and (c) S3 with different set strains. Fatigue tests of (d) PI and (e) S3 at 65% strain for 60 cycles. (f) The compressive schematic of hybrid aerogels. (g) Digital images showing the compress-recover process of the 3D hybrid aerogel. (h–n) Thermal infrared images of S3 recorded at intervals of 1 min from 0 to 6 min. (o) Variation trend of the sample surface temperature with heating time. (p) Thermal conductivity of all samples at the test temperature of 75°C. Inset in (p): thermal insulation mechanism of rGO/polyimide hybrid aerogels. (q) Infrared emissivity plots of PI and S1/S2/S3/S4/S5 hybrid aerogels. Digital images of non-woven fabrics heating tests (r) with a stainless steel block and (s) with the S3 sample.

图4. (a) The real permittivity and (b) the imaginary permittivity of all samples. (c) Bar charts of average dielectric loss tangent values and average attenuation constant values of all samples. (d–i) 2D color-mappings of impedance matching values of PI/S1/S2/S3/S4/S5. (j) Schematic illustration of electromagnetic wave absorption mechanisms for the as-prepared samples.

图5. (a–f) The 3D color-mappings of reflection loss of
PI/S1/S2/S3/S4/S5/paraffin. The reflection loss curves of (g) S2/paraffin and (h) S3/paraffin with various thicknesses between 3.60 and 5.00 mm. (i) The 3D column chart of the minimum reflection loss of all hybrid aerogels in the X band. (j) The 2D representation of effective bandwidth at different thicknesses. (k) The 3D waterfall plots of simulated reflection loss for a model of PEC layer coated with S3/paraffin at different thicknesses from 2.20 to 4.30 mm. (l) Digital images and schematic mechanism diagram of Tesla wireless transmission experiments for the 3D conductive rGO/PI aerogel.

图6. The acoustic absorption coefficient of (a) PI and (b) S3 within a low-frequency range from 50 to 1000 Hz. (c) The increase in acoustic absorption coefficient between PI and S3. (d) The proposed structure model of polyimide-based hybrid aerogels, which includes the polymer porous membranes and ultrathin graphene motif. (e) The multiple mechanisms of the polyimide-based acoustic absorber to achieve superior absorption by the resonance of porous polyimide membranes and ultrathin graphene, as well as air friction damping in the pores.

3小结

总之,用于高性能红外-雷达-声学兼容隐身的轻质、机械弹性和隔热的 rGO/PI 混合气凝胶已被成功制备出来。异质界面结构可通过水溶性 PI 前体的简便制备过程以及随后的 rGO 与 PI 成分的调节匹配过程制备。所制备气凝胶的密度范围为 0.035 至 0.068 g cm-3,显示了其优异的轻质特性。此外,这些气凝胶的机械强度(50% 应变时的最大应力为 44.11 kPa)和弹性恢复(65% 应变时经过 60 次压缩-回弹过程后保持原形)也非常出色,确保了它们在各种条件下的耐用性和弹性。气凝胶的隔热性能也值得一提,随着 rGO 含量的增加(从 0 到 50 wt%),75°C 时的热导率值会降低(从 0.050 到 0.037 W m-1 K-1),从而有效防止热量传递。

这些混合气凝胶表现出的综合性能非常有利于进一步的红外-雷达-声学兼容隐形应用。相应地,红外线发射率在3-5μm波段从0.926降至0.615(降低值:0.311),在8-14μm 波段从 0.977 降至 0.953(降低值:0.024),这无疑有利于进一步开发有效的红外线隐身材料。在雷达波吸收性能方面,S3/paraffin 的最小反射损耗值为 -48.86 dB,有效吸收带宽为 3.64 GHz,这可能得益于其优异的微波衰减能力和适当的阻抗匹配性能。此外,这项工作还巧妙地利用在 8.2-12.4GHz 频率范围内测得的电磁参数,扩展模拟了2-30 GHz 频段内的雷达隐身性能。

结果表明,S3/石蜡样品的模拟 RLmin 值在 15.94 GHz 时可达 -48.85 dB,厚度为 3.6 mm 时的有效吸收带宽可达 10.19 GHz(从 12.33 GHz 到 22.52 GHz),这表明 rGO/PI 混合气凝胶在避免雷达探测防护设备方面具有巨大潜力。与类似的复合材料相比,S3 样品同时实现了低导热系数和小反射损失值之间的平衡,在红外-雷达兼容性方面具有显著优势(图 S16,表 S4)。此外,这些混合气凝胶还是出色的吸音材料,其中 S3 样品在低频(仅 63 Hz)时的吸音系数最大可达 0.457。通过二维/三维结构的创新设计和成分比例的有效控制,将热传递机理、电磁损耗理论和吸声机理耦合在一起,实现了 “红外热伪装-雷达波吸收-声波衰减 ”三位一体。该研究有望推动隐身材料从 “单一对抗 ”走向 “智能兼容”,为下一代隐身技术提供理论支撑和解决方案。

文献:

来源:材料分析与应用

来源:石墨烯联盟

相关推荐