摘要:受5G通信技术发展的推动,电子设备在暴露于多频段电磁辐射并受到温度变化影响时,面临性能波动的挑战。针对单一组分材料性能受限的问题,本文,天津工业大学耿宏章 教授团队在《ACS Appl. Electron. Mater》期刊发表名为“Flexible Comp
1成果简介
受5G通信技术发展的推动,电子设备在暴露于多频段电磁辐射并受到温度变化影响时,面临性能波动的挑战。针对单一组分材料性能受限的问题,本文,天津工业大学耿宏章 教授团队在《ACS Appl. Electron. Mater》期刊发表名为“Flexible Composite Films of Modified Carbon Nanotubes/MXene-Aramid Nanofibers with Electromagnetic Interference Shielding and Electrical Heating Performance”的论文,研究提出了一种协同增强型复合薄膜的设计策略。通过多组分协同作用及多维结构调制,克服了功能材料的性能局限性。采用咖啡酸(CA)对多壁碳纳米管(MWCNTs)表面进行改性,并利用MXene纳米片构建三维互联导电网络。通过氢键界面强化效应,结合芳纶纳米纤维(ANF)作为基体,制备了CA-MWCNTs/MXene-ANF复合薄膜。
该复合薄膜保持了优异的力学性能,抗拉强度为49.5 MPa,断裂伸长率为6.4%,在X波段展现出46 dB的电磁屏蔽效能,并具备快速电热响应能力,在3 V低电压驱动下,可在10秒内将温度从室温(25 °C)提升至169 °C。它克服了传统填料非均匀分散和界面粘合不良导致的性能限制。这些优势使其在智能可穿戴设备、航空航天工程、柔性电子学和医疗应用等多个领域具有显著潜力。
2图文导读
图1. Schematic illustrations of the fabrication processes for (a) CA-MWCNTs, (b) MXene, (c) ANF, (d) CMMA composite films.
图2. TEM images of (a) MWCNTs and (b) CA-MWCNTs; (c) SEM image of MWCNTs; (d, e) C and O elemental mapping images of MWCNTs; (f) SEM image of CA-MWCNTs; (g, h) C and O elemental mapping images of CA-MWCNTs; (i) Raman spectra, (j) FT-IR spectra, (k) XPS spectra of MWCNTs and CA-MWCNTs; C 1s spectra of (l) MWCNTs and (m) CA-MWCNTs.
图3. (a) TEM images, (b) AFM images and (c) high profile of MXene nanosheet; (d) XRD patterns of MAX-phase Ti3AlC2 and Ti3C2Tx MXene; (e) XPS spectra of Ti3C2Tx MXene; (f) Ti 2p spectra, (g) O 1s spectra, (h) C 1s spectra and (i) F 1s spectra of Ti3C2Tx MXene.
图4. (a) XRD patterns of PPTA and ANF; (b) Raman spectra of ANF; (c) XRD patterns, (d) FTIR spectra, and (e) XPS spectra of CA-MWCNTs, MXene, ANF, and CMMA composite films; (f) C 1s spectra and (g) O 1s spectra of ANF; (h) C 1s spectra and (i) O 1s spectra of CMMA composite films.
图5. (a) Internal structure of a CMMA film; (b) Cross-sectional SEM image of a CMMA film; (c) Localized magnified SEM image of the conductive layer of a CMMA film; (d) Localized magnified SEM image of the base layer of a CMMA film; (e) Surface SEM image of a CMMA film.
图6. (a) Mechanical properties and (b) electrical conductivity of CMMA composite films with different concentration ratios; (c, d) SER, SEA, and SET values with (e, f) R, T, and A power coefficients for CM1M1A, CM1M4A in the 8.2–12.4 GHz frequency range; (g) average SER, SEA, and SET values for CM1M1A and CM1M4A; (h) relationship between SSE/t and thickness for different materials; (i) Schematic diagram of the EMI shielding mechanism of CMMA composite films.
图7. (a) Time–temperature profiles of CM1M1A at 2–6 V driving voltage and (b) of CM1M4A at 1–3 V driving voltage; (c) Thermal infrared images of CM1M1A at 2–6 V driving voltage and (d) of CM1M4A at 1–3 V driving voltage; (e) Surface temperature distribution of CM1M4A under stepwise voltage conditions (1, 1.5, 2, 2.5, and 3 V) and (f) during heating/cooling cycles; (g) Surface temperature distribution of CM1M4A at 3 V, and (h) results of 10 heating/cooling cycles at cyclic voltages of 1, 2, and 3 V; (i) Temperature testing of CM1M4A at a constant voltage of 3 V for 5 h; (j) TG and (k) DTG curves of ANF, CM1M1A, and CM1M4A.
图8. SEM images of CMMA composite films (a, b, e) before and (c, d, f) after heating test; (a–d) are surface images and (e, f) are cross-section images.
3小结
在本研究中,采用一种简便的真空辅助过滤技术,成功制备了具有三维互穿导电网络的柔性复合薄膜。通过非共价修饰将多壁碳纳米管(MWCNTs)与天然多酚(CA)结合,既提高了其分散性,又保持了高导电性。随后,将二维MXene纳米片作为协同增强组分引入,共同构建导电层。以ANF为基底,成功制备了CA-MWCNTs/MXene-ANF柔性复合薄膜,其具有三维互穿网络结构。具有最优配比的CM1M4A样品展现出卓越的电磁干扰(EMI)屏蔽效能,屏蔽值达46 dB,同时保持仅30 μm的超薄厚度。此外,该材料展现出卓越的电热特性和热稳定性,可在3V低电压下仅用10秒将温度从25 °C升至169 °C,实现超快速响应。循环电压阶跃测试及5小时恒压运行验证了其温度跟踪能力、循环稳定性和动态电压下的微观结构稳定性。其低电压驱动特性、柔韧性和多功能集成优势,为智能可穿戴设备、柔性电子设备的热管理以及电磁防护提供了创新解决方案。
文献:
来源:材料分析与应用
来源:石墨烯联盟