仿生石墨烯/纤维素径向气凝胶太阳能驱动海水净化和能量协同转换

360影视 欧美动漫 2025-08-25 16:48 4

摘要:淡水短缺已成为制约社会发展的关键问题,如何有效解决这一问题迫在眉睫。界面太阳能蒸汽生成(ISSG)对于提升太阳能向水蒸气的能量转换效率和蒸发速率至关重要。本文,南京林业大学徐朝阳 教授团队在《Chemical Engineering Journal》期刊发表名

1成果简介

淡水短缺已成为制约社会发展的关键问题,如何有效解决这一问题迫在眉睫。界面太阳能蒸汽生成(ISSG)对于提升太阳能向水蒸气的能量转换效率和蒸发速率至关重要。本文,南京林业大学徐朝阳 教授团队在《Chemical Engineering Journal》期刊发表名为“Biomimetic graphene/cellulose radial aerogel for solar-driven seawater purification and energy co-conversion”的论文,研究采用简便的定向冻结法制备了纤维素气凝胶界面蒸发装置(r-CPGG)。该蒸发器具有径向中心对称结构,模拟了针叶木的孔隙结构。r-CPGG在200–2500 nm的宽光谱范围内展现出优异的光吸收性能,可迅速将上表面温度提升至75 °C以上,同时在不同盐浓度和自然水环境中保持界面蒸发的稳定性。在1 kWm−2光照强度下,r-CPGG的蒸发速率达到1.52 kgm−2 h−1,蒸发过程中水体中微塑料和金属离子的去除率分别达到99.91%和99.28%,且在蒸发过程中可连续输出约0.14 V的电压长达10小时。本研究不仅阐明了气凝胶在环境修复与可再生能源应用中的双重功能,还为海水淡化及污染物去除提供了绿色高效的策略。

2图文导读

图1. (a) Microstructure model of r-CPGG aerogel, (b) and (c) The structures of the upper surface of r-CPGG aerogel, (d) Structure of the side of r-CPGG aerogel, (e) Radiating trend of r-CPGG aerogel, (f) The formation process of r-CPGG aerogel, (g) Actual picture of r-CPGG aerogel.

图2. (a) ESEM and EDS images of the internal structure of r-CPGG aerogel, (b) FTIR spectrum of raw materials, (c) FTIR spectrum of aerogel, (d) XPS broad spectrum of aerogel, (e) XRD spectrum of raw materials, (e) XRD spectrum of aerogel, (e) Raman spectra of GO and aerogel.

图3. (a) Dynamic water contact angle of r-CPGG aerogel (DI water and seawater), (b) Physical picture of the stability of r-CPGG aerogel in water, (c) Weight gain of aerogel after absorbing water, (d) Compressive stress-strain curve and 50 % compressive strain cycle test diagram of r-CPGG aerogel, (e) TG and DTG diagrams of aerogels.

图4. (a) Light reflectivity of aerogel, (b)Light absorption of aerogel, (c) Thermal conductivity of aerogel, (d) Temperature variation curve of aerogel with light, (e) Cyclic testing of aerogel photo-thermal conversion capability, (f) Temperature changes of water surface and aerogel surface under light, (g) Infrared image of aerogel under illumination, (h) Infrared images of water and aerogel surfaces under illumination.

图5. (a) Dark evaporation rate and equivalent evaporation enthalpy of aerogel, (b) Evaporation rate and light utilization efficiency of aerogel, (c) Change in water mass per square meter in a dark field and in an evaporation unit below 1 kW m−2, (d) 30 evaporation cycles, (e) Continuous evaporation cycles with different light intensities, (f) Comparison of different articles.

图6、(a) Schematic diagram of r-CPGG aerogel evaporation power generation; (b) Output voltage diagram of r-CPGG aerogel during dark evaporation; (c) Output voltage diagram of r-CPGG aerogel during interface evaporation; (d) Output voltage diagram of r-CPGG aerogel under light for 10 h; (e) Variation of the output voltage, current, and power of r-CPGG aerogel with different resistive loads.

3小结

在本研究中,作者开发了一种径向中心对称的纳米纤维素/石墨烯蒸发器(r-CPGG),以实现高效的太阳能蒸汽生成和脱盐,同时探索其在同时进行水净化和发电方面的潜力。通过优化模具设计和控制冻结温度,我们设计了一种受树木启发的多孔结构气凝胶,确保了高效的水传输并通过增强的热绝缘性最小化热量损失。在1 kW m−2的太阳能照射下,r-CPGG气凝胶展现出95.1%的卓越光利用效率和1.52 kg m−2 h−1的高蒸发速率。此外,其协同吸附性能可去除99.91%的微塑料和99.28%的金属离子,凸显其在水净化方面的有效性。该装置在不同光照条件下展现出优异的运行稳定性,并具备抗盐分积累能力,使其适用于各种自然水环境中的实际应用。值得注意的是,r-CPGG系统在太阳能照射下可产生约0.14 V的稳定电压,并在10小时内保持稳定输出。r-CPGG气凝胶展现了其水净化与能量 harvesting 的双重功能。这些发现表明,基于纤维素的气凝胶在解决淡水短缺问题方面具有巨大潜力,同时通过太阳能驱动的蒸发和脱盐过程,为水电联产提供可持续解决方案。

文献:

来源:材料分析与应用

来源:石墨烯联盟

相关推荐