高导电石墨烯/碳纳米管涂层芳纶纤维,用于电磁干扰屏蔽

360影视 国产动漫 2025-09-17 16:50 1

摘要:电磁干扰(EMI)屏蔽技术在航空航天、国防及可穿戴电子设备等领域至关重要。石墨烯和碳纳米管(CNTs)等碳烯材料凭借卓越的电学与力学性能,成为EMI屏蔽的理想候选材料。然而,将这些纳米材料均匀集成到不同纤维基底上的可扩展策略仍存在局限。本文,北京大学高鑫 助理

1成果简介

电磁干扰(EMI)屏蔽技术在航空航天、国防及可穿戴电子设备等领域至关重要。石墨烯和碳纳米管(CNTs)等碳烯材料凭借卓越的电学与力学性能,成为EMI屏蔽的理想候选材料。然而,将这些纳米材料均匀集成到不同纤维基底上的可扩展策略仍存在局限。本文,北京大学高鑫 助理教授团队在《Matter》期刊发表名为“Dimension-engineered sequential assembly of carbonene materials on arbitrary fiber substrates for electromagnetic interference shielding”的论文,研究提出一种基于维度工程的序列组装策略,利用二维石墨烯与一维碳纳米管的互补几何结构,在任意纤维表面构建出贴合紧密且坚固的涂层。该研究强调维度在引导液相纳米材料组装过程中的关键作用。所得石墨烯/碳纳米管涂层芳纶纤维(GCAFs)展现出高导电性和机械强度。经织造制成织物后,其平均电磁干扰屏蔽效能达85.88分贝,并在恶劣环境下保持性能稳定。该策略攻克了功能性纤维制造的核心难题,为开发轻质柔性高性能电磁屏蔽纺织品及复合材料提供了可扩展且普适的解决方案。

2图文导读

图1. Schematic of the dimension-engineered assembly of carbonene materials onto aramid fibers for enhanced electromagnetic interference shielding。

图2. Characterizations of GCAFs

(A) The photograph of GCAF.

(B) The SEM images of GCAF. The left insets show the SEM image of the GCAF cross-section.

(C) Raman spectra of AF, G2, and G2/C6.

(D) The SEM image of G1.

(E) The SEM image of G2.

(F) The SEM image of G2/C6.

(G) Electronic transport mechanism of different GCAFs. G1, G2, and G2/C6 represent AFs after one graphene dip-coating cycle, two graphene dip-coating cycles, and two graphene dip-coating cycles followed by six CNT dip-coating cycles, respectively.

图3. Electrical and mechanical properties of GCAFs

(A) Electrical conductivity of different fibers.

(B) Comparison of electrical conductivity of fibers prepared using different coating methods.

(C) Normalized conductivity of different fibers with 8 coating cycles.

(D) Stress-strain curves of different fibers.

(E) Comparison of the Young’s modulus and toughness of different fibers.

(F) Comparison of electrical conductivity and tensile strength of different carbonene composite fibers and GCAF. See Table S1 for details.

图4. Characterizations of GCAFF and its EMI shielding properties

(A) Photograph of GCAFF.

(B) SEM image of GCAFF.

(C) Sheet resistance mapping of GCAFF.

(D) EMI SET of different fabrics in 8.2–12.4 GHz.

(E) EMI SET of G2/C6 fabrics composed of 1–3 layers.

(F) SE of different fabrics.

(G) Average SET, SEA, and SER of different fabrics.

(H) Power coefficient A, R, and T values of different fabrics.

(I) EMI SET of GCAFFs with different sheet resistances in 4–40 GHz.

图5. The electrical, EMI shielding, mechanical, and electric heating performance of GCAFF under harsh conditions

(A) Sheet resistance changes over 60 s of burning.

(B) Sheet resistance changes over 12 cycles of washing.

(C) Sheet resistance changes over 200 cycles of bending and twisting.

(D) EMI SE values after different burning times.

(E) EMI SE values after different washing times.

(F) EMI SE values after different bending and twisting times.

(G) Specific tensile strength and modulus of GCAF yarns after burning, washing, bending, and twisting.

(H) Time-dependent temperature variation of GCAFF under different voltages.

(I) Infrared image of the GCAFF electrothermal device after 180° bending.

3小结

综上所述,我们提出一种尺寸工程策略,通过简便的湿化学方法在各类高性能纤维基底上制备具有卓越机械稳定性和可调导电性的通用碳烯涂层。该涂覆工艺包括:先将二维石墨烯纳米片沉积于纤维表面形成层状基底,再施加一维碳纳米管包裹并压缩石墨烯,确保实现完整的sp²碳覆盖。采用该策略,通过在AF纤维上涂覆石墨烯与碳纳米管,成功制备出高强度(5.92GPa)与高导电性(641.47 S/cm)的GCAF复合材料。该设计中,碳纳米管作为导电桥接结构连接石墨烯片层,形成连续稳定的三维导电网络。该独特结构使GCAFF在X波段实现高达48.64 dB的卓越电磁屏蔽效能(单层厚度仅0.42毫米),同时在多种环境条件下保持高耐久性。这些发现为大规模生产兼具高强度、优异导电性及卓越环境稳定性的轻质结构功能集成电磁屏蔽织物提供了重要启示。

文献:

来源:材料分析与应用

来源:石墨烯联盟

相关推荐