摘要:生物催化剂在非天然环境中的催化稳定性及重复利用性一直是限制其工业应用的主要因素。南丹麦大学吴昌柱教授课题组一直致力于为酶及全细胞开发相容性良好的聚合物“铠甲”,发展了系列聚合物-酶(Angew. Chem. Int. Ed.2018,57, 13810-138
生物催化剂在非天然环境中的催化稳定性及重复利用性一直是限制其工业应用的主要因素。南丹麦大学吴昌柱教授课题组一直致力于为酶及全细胞开发相容性良好的聚合物“铠甲”,发展了系列聚合物-酶(Angew. Chem. Int. Ed. 2018, 57, 13810-13814; Angew. Chem. Int. Ed. 2023, 62, e202312906; 2024, 63, e202400105)、聚合物-全细胞杂合体系(Nat. Commun., 13, 3142, 2022; 2024, e202416556),显著提高了生物催化剂的稳定性及重复利用。在这些工作的基础上,该团队进一步以具备催化功能的聚合物“武装”细胞膜,在赋予全细胞催化剂优异抗逆性的同时,实现了可多次使用的光/化学-生物偶联催化。相关工作近日发表于知名期刊Nature catalysis,宁健博士为论文第一作者,浙江工业大学孙志永研究员为共同第一作者,吴昌柱教授为论文通讯作者。
图1. 聚合物-细胞体系构筑策略及其光/化学-生物欧联催化示意图。图片来源:Nat. Catal.
为了接枝聚合物铠甲,作者采用了前期的开发的生物相容性良好的可控自由基聚合策略(图1),将具备光催化功能的单体M1聚合到细胞表面,使其具备光-生物偶联催化能力;为进一步扩展应用,基于钌-配体的单体M2被接枝到细胞表面,构筑了化学-生物偶联催化体系。
图2. 聚合物的接枝表征及其在细胞表面的分布。图片来源:Nat. Catal.
接枝聚合物的表征
为证实聚合物的成功接枝,作者设计合成了荧光单体M3,并将其与单体M1共聚。荧光显微镜(图2d,2f)证实了聚合物在细胞表分布。此后,将聚合物从细胞表面剪切下来(图2k),并利用GPC对其分子量做了进一步表征。
存活率及增殖性能表征
之后,作者对包裹过程的生物相容性进行了验证。在细菌活/死实验中,通过与原始细菌对比(图3a),可以看到聚合物-细胞杂合体有着较高的存活率(图3c, 绿色)。冷冻电镜结果表明细胞膜在聚合前后保持了较好的完整性。此外,接枝聚合物的细胞繁殖能力也与原始细菌相当(图3h-j),而聚合物随着细胞的增殖过程逐渐消失(图3k-n)。
图3. 存活率及增殖性能表征。图片来源:Nat. Catal.
细胞催化活性研究
在证实细胞膜及增殖功能完整性后,作者进一步评价了聚合过程对胞内酶活性的影响。结果表明(图4),在细胞内表达的多种酶(苯甲醛裂解酶、脂肪酶、醇脱氢酶)活性均未受到明显影响。此外,利用荧光显微镜证实了聚合物在酶催化过程中的稳定性。
图4. 生物催化活性评价。图片来源:Nat. Catal.
聚合物对细胞的保护性
为了研究聚合物对细胞在各种环境压力下的抵御能力的影响,作者分别施加紫外光、高温、低pH、有机溶剂以及有机-水两相界面张力等外界压力。在细菌的死/活实验以及酶活稳定性实验中,聚合物-细胞杂合体系的表现均大大优于原始细菌(图5)。例如,在有机-水两相界面,原始细菌几乎全部失去活性,而接枝了聚合物的细胞则有超过83%的存活率(图5a, 5b)。此外,聚合物-细胞杂合体中的酶活性也是原始细菌的2倍(图5f)。在其他压力环境下,聚合物-细胞杂合体也有着相似的存活率和酶活性。
图5. 保护性评价。图片来源:Nat. Catal.
光-生物偶联催化及可重复利用性
对表达苯甲醛裂解酶的细胞表面进行光催化聚合物的接枝后,作者构建了光-生物偶联催化体系(图6a)。催化效果评价显示,将聚合物接枝到细胞表面的催化效果远优于将同等量的单体或聚合物与细胞的物理混合(图6b),显示了聚合物在细胞表面与胞内酶协同催化的优势。得益于聚合物的保护性作用,该聚合物-细胞杂合体系连续使用六次后,其活性仍没有明显的下降(图6f)。此外,该光催化聚合物可以偶联其它酶进行多步光-生物催化反应,并且都具备较高的反应活性(图6i,6k)。
图6. 光-生物偶联催化及可重复利用性。图片来源:Nat. Catal.
化学-生物偶联催化研究
除了光催化聚合物外,作者将基于钌的金属-有机催化剂接枝到细胞表面(图7a),并通过透射电镜对细胞表民进行了表征,证明了细胞膜的完整性和钌元素在膜上的分布(图7b、7c、7e、7f)。钌在细胞膜上可以稳定存在(图7d),有利于化学-生物偶联催化的高效进行和重复使用(图7j、7k)。
图7. 化学-生物偶联催化的研究。图片来源:Nat. Catal.
综上所述,作者利用生物相容性优良的可控自由基聚合策略在细胞表面接枝聚合物构筑细胞铠甲,在提高细胞非天然环境下的耐受性的同时,偶联胞内酶构建可重复利用的光/化学-生物偶联催化过程。鉴于该聚合策略的通用性以及化学催化剂的多样性,可以展望以此为基础构建的偶联催化体系将为二者的结合提供更多可能,为发展更先进、可持续的合成策略提供参考。
Engineering living cells with polymers for recyclable photoenzymatic catalysis
Jian Ning, Zhiyong Sun, René Hübner, Henrik Karring, Morten Frendø Ebbesen, Mathias Dimde & Changzhu Wu
Nat. Catal., 2024, DOI: 10.1038/s41929-024-01259-5
课题组介绍
南丹麦大学化学系的吴昌柱教授课题组致力于酶催化及绿色化学的研究;其研究重点是通过对酶及细胞的化学修饰获得new-to-nature的生物催化应用。详情请参见:https://www.wugroup.sdu.dk/
希望对我们组研究方向感兴趣的研究人员与我们取得联系。我们课题组现在资金充足、年轻、有活力,具有较好的发展前景;目前我们招聘多个全奖的博士和博士后位置;丹麦的博士生、博士后的质量和待遇享誉全球。
来源:X一MOL资讯