摘要:西安电子科技大学等首次通过理论分析揭示了无线电地图构建是生成问题,并提出RadioDiff模型,在无采样动态无线电地图构建的准确性、结构相似度和峰值信噪比三大指标上全面领先。
【导读】 西安电子科技大学等首次通过理论分析揭示了无线电地图构建是生成问题,并提出RadioDiff模型,在无采样动态无线电地图构建的准确性、结构相似度和峰值信噪比三大指标上全面领先。
无线电地图(Radio Map, RM)是一种非常有前途的技术,通过位置信息获取路径损耗,对于6G网络应用中降低路径损耗估算的通信成本具有重要意义。
以往的RM构建方式要么需要大量计算资源,要么依赖昂贵的基于采样的路径损耗测量方法。 尽管基于神经网络(Neural Network, NN)的方法可以在不采样的情况下高效构建RM,但其性能仍未达到最佳,主要是由于RM构建问题的生成特征与现有基于神经网络的方法所采用的判别建模之间存在偏差。 为了提升 RM 构建性能,西安电子科技大学、电子科技大学、滑铁卢大学的研究人员首次从「数据特征」和「神经网络训练方法」两个角度,对「RM构建是一个生成问题」的原因进行了全面的理论分析,并提出了一种基于去噪扩散模型的方法(RadioDiff),将无采样RM构建问题建模为条件生成问题,以实现高质量的RM构建。扩散模型的应用: 首次将基于扩散的生成模型应用于RM构建,并采用解耦扩散模型提升性能和推理效率
动态环境特征提取: 通过静态和动态环境特征提示矩阵,以及自适应快速傅立叶变换模块,增强了扩散模型在动态环境特征提取中的能力。
实验验证: 实验结果表明,所提出的RadioDiff在准确度、结构相似度(SSIM)和峰值信噪比(PSNR)三项指标上均达到了当前最先进(SOTA)的 RM 构建性能。
扩散模型
扩散模型是一种基于马尔可夫链的生成模型,通过逐步学习去噪过程来恢复数据.
扩散模型的工作原理: 扩散模型的核心思想是通过一系列步骤将原始数据逐渐「扩散」成噪声,然后通过逆向过程——即从添加了噪声的数据中逐步去除噪声,以生成原始数据。这个过程可以分为两个主要阶段。 前向扩散过程: 原始数据会经历一个由多个时间步组成的马尔可夫链,在每个时间步中,都会根据一定的概率分布向数据中添加高斯噪声。经过T步之后,原始数据会被完全转化为随机噪声。 反向去噪过程: 在生成数据时,扩散模型首先从先验分布中创建未结构化的噪声向量,然后通过训练好的神经网络按照相反的时间顺序去除这些噪声。 RM的前向扩散过程效果对比
为了评估所提出的RadioDiff模型,将其与其他方法进行了比较。为了确保实验的全面比较,分别比较了基于CNN、基于GAN和基于Mamba的方法,这些方法代表了当前基于深度学习的RM重建任务中使用的主要架构。
对于比较模型的详细参数设置,训练和测试数据将与RadioDiff保持一致。使用以下方法进行比较,其中SRM为静态RM,DRM为动态RM。 不同方法构建的SRM的比较来源:东窗史谈
免责声明:本站系转载,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本站联系,我们将在第一时间删除内容!