摘要:钛合金增材制造过程中,特别是在基于粉末床的选区激光熔化(L-PBF)过程中,由于快速的冷却速率,可以在钛合金基体中形成均匀分布的薄片状TiC沉淀相以及复杂的位错网络结构。这些位错网络不仅将TiC颗粒相互连接,同时也将它们与晶界相连接。通过控制位错的密度和分布,
3D科学谷洞察
钛合金增材制造过程中,特别是在基于粉末床的选区激光熔化(L-PBF)过程中,由于快速的冷却速率,可以在钛合金基体中形成均匀分布的薄片状TiC沉淀相以及复杂的位错网络结构。这些位错网络不仅将TiC颗粒相互连接,同时也将它们与晶界相连接。通过控制位错的密度和分布,可以优化钛合金的力学性能。
本文将介绍北京航空航天大学邱春雷教授团队研究人员在材料科学领域国际知名期刊Materials Research Letters (Impact Factor: 8.6) 上发表的论文 “Dislocation network mediated grain boundary engineering in an additively manufactured titanium alloy”。论文第一作者为陈旭博士,通讯作者为邱春雷教授。
摘要
钛合金在制造或热处理过程中经常会形成连续的晶界α相(CGB-α),导致诸如塑性、疲劳等力学性能的降低。增材制造因其快速的冷却速率能够抑制钛合金晶界α相的形成,但在之后的热处理过程中易析出CGB-α。为了克服该问题,北航邱春雷团队提出了基于增材制造钛合金中复杂位错网络结构开展晶界工程的新概念,通过晶界工程在热处理过程在晶界优先析出分散的沉淀颗粒,以抑制CGB-α的形成。具体地,他们在一种含碳的钛合金中通过选区激光熔化在基体形成了均匀分布的薄片状TiC沉淀相以及复杂的位错网络结构。该网络结构将TiC颗粒相互连接,同时又将它们与晶界相连接,固溶处理时,位错网络促进了晶内碳化物的溶解和晶界离散TiC颗粒的形成。在时效处理过程,这些晶界碳化物抑制了CGB-α的形成,取而代之的是不连续的晶界α。该晶界结构与晶内高密度的纳米α颗粒一同使合金展现出优异的强度-延展性结合。该研究表明,基于增材制造金属材料位错网络结构的晶界工程是有效调控微观组织,改善力学性能的重要手段。
关键词
钛合金;选区激光熔化;晶界工程;微观结构;拉伸性能
研究人员在选区激光熔化的Ti-Mo-Cr-Co-0.1C合金中观察到大量均匀弥散分布的薄片状TiC沉淀相(如图1a-b,f),这些TiC颗粒通过复杂的位错网络彼此连接,并与晶界相连通(如图1d-e)。合金经固溶处理后,位错网络促进了TiC颗粒溶解,碳原子扩散到晶界,形成离散分布的TiC颗粒(图1g-i)。由于这些碳化物颗粒的存在,时效处理后,晶界处并未形成连续α相(图1j,k),实际上晶界α相被TiC颗粒打断(如图2a),有的晶界甚至没有α相的存在(如图2b),这表明晶界TiC颗粒抑制了连续的晶界α相的形成。此外,时效还促使合金晶粒内部析出高密度的纳米级α沉淀相(图1j-l、图2)。
图1 (a-f) 打印态、(g-i) 固溶态和(j-l) 时效态Ti-Mo-Cr-Co-0.1C合金的微观结构
图2 时效处理的Ti-Mo-Cr-Co-0.1C合金微观组织
图3展示了不同制备状态的Ti-Mo-Cr-Co-0.1C合金的拉伸性能。从中可见,打印态的合金发生了脆性断裂,这是由于合金基体中均匀分布着薄片状TiC颗粒,会使位错运动变得非常困难,从而导致合金脆化。薄片状TiC的形态及其本身的脆性属性也会导致合金脆化。固溶处理后的合金展现出较高的屈服强度(~1100 MPa)和延伸率(>10%)。合金具有良好塑性的原因是固溶处理使晶内TiC溶解,消除了TiC对位错运动的阻碍作用,使位错可以更自由地滑移。时效使合金的屈服强度进一步提高,达到1170 MPa,极限强度则达到了1199 MPa,延伸率接近8%,合金的应变硬化率和均匀延伸率也大幅提高。对合金二次裂纹扩展行为的研究发现,晶界TiC颗粒的存在改变了合金的断裂模式(图4d-f),即晶界TiC颗粒导致裂纹扩展路径发生偏转,使裂纹尖端发生钝化,有效阻碍裂纹扩展,提高了材料的塑韧性。
图3 不同状态的Ti-Mo-Cr-Co-0.1C合金的(a)工程应力-应变曲线和(b)真应力-应变曲线
图4 (a) 打印态、(b) 固溶态和(c) 时效态Ti-Mo-Cr-Co-0.1C合金拉伸后的断口形貌以及(d-f)时效态合金中的二次裂纹扩展路径
对时效态合金的变形亚结构进行研究后发现,变形后的合金中α沉淀相周围聚集了高密度的位错(图5a-b),表明α相可以有效阻碍位错运动,有利于提高应变硬化率、最高强度和均匀延伸率。另一方面,α沉淀相内部也存在一定密度的位错(图5c-d),表明位错可以剪切通过α析出物,有利于塑性变形,防止材料过早地失效。这与不连续的GB-α结合促进了良好总延伸率的获得。
图5 拉伸后的(a) 固溶态和(b-d) 时效态Ti-Mo-Cr-Co-0.1C合金中的变形亚结构
本研究首次提出了一种基于增材制造钛合金中复杂位错网络结构的晶界工程策略,有效抑制了连续晶界α相的形成,促进优异强度-塑性结合的获得。本研究的发现为抑制钛合金中连续晶界α相的形成提供了新途径,对钛合金的微观结构优化设计具有重要参考价值。
文献链接:
Chunlei Qiu* & Xu Chen (2024) Dislocation network mediated grain boundary engineering in an additivelymanufactured titanium alloy, Materials Research Letters,12:11,797-805. (原文链接:https://doi.org/10.1080/21663831.2024.2385969)
来源 Materials Research Letters l
北航邱春雷团队:抑制钛合金中连续晶界α相新策略
l 谷专栏 l
网站投稿 l 发送至2509957133@qq.com
来源:3D科学谷