浙江理工大学胡毅教授CEJ:集被动辐射冷却与交流电致发光于一体的纳米纤维膜,用于智能可穿戴

360影视 2025-01-15 09:13 1

摘要:为确保穿着舒适和长时间户外降温,辐射降温材料必须具有透气性和自洁性,虽然已有材料具有出色的透气性、自洁性和辐射冷却性能,但其制备过程十分复杂,而且通常含氟聚合物,并不环保。此外,目前的日间辐射冷却材料以白色为主以达到较高的太阳反射率。然而,在实际应用中,人们的

为确保穿着舒适和长时间户外降温,辐射降温材料必须具有透气性和自洁性,虽然已有材料具有出色的透气性、自洁性和辐射冷却性能,但其制备过程十分复杂,而且通常含氟聚合物,并不环保。此外,目前的日间辐射冷却材料以白色为主以达到较高的太阳反射率。然而,在实际应用中,人们的审美偏好各不相同。除了有效的冷却性能外,具有特定功能的 PDRC 材料仍然稀缺。因此,开发适合特定应用场景的 PDRC 材料可以提高其在实际应用中的可行性。

鉴于此,浙江理工大学纺织科学与工程学院(国际丝绸学院)博士生导师胡毅教授课题组报道了一种热塑性聚氨酯(TPU)/聚二甲基硅氧烷(PDMS)@二氧化硅(SiO2)纳米膜(RCNM),这种纳米膜具有高弹性、防水性、透气性和日间辐射冷却性能,并利用喷涂技术将交流电致发光器件与其集成。RCNM借助米氏散射理论实现了 95.6% 的反射率。PDMS 和二氧化硅纳米粒子的策略性组合在大气透明度窗口内产生共振,将 RCNM 的发射率显著提高到 93.2%,并将水接触角提高到 143°,从而增强了其自清洁能力。与 T/C 织物相比,RCNM 在皮肤上最高可降低6 ℃。此外,集成RCNM/ACEL 织物的亮度高达 40.16 cd/m²,即使经过严格的机械测试(包括卷边、针刺、再压缩、剪切和拉伸)也保持不变。

相关工作以“High-performance nanomembranes integrating radiative cooling and alternating current luminescence for smart wearable”为题发表在国际著名期刊Chemical Engineering Journals上(影响因子13.3),doi:10.1016/j.cej.2025.159214。

Fig.1 Integrated dual-function design of RCNM/ACEL for advanced smart fabrics. i) Schematic illustration of the working principle of the RCNM. ii) Graphical representation of solar reflectivity and mid-infrared emissivity properties of the RCNM. iii) Layer-by-layer schematic of the ACEL device and the corresponding SEM. iv) Digital photo of RCNM/ACEL integrated dual-function fabric.

交流电致发光(ACEL)具有若干优势,包括耗电量低、制备简单和灵活性强,其基本原理是电流通过特定材料,激发这些材料中的电子,从而发光。这一过程主要是将电能直接转化为光能,发热量极低。研究团队受染整工艺中的印花技术的启发,在辐射冷却材料上 “打印” ACEL 并根据所需的设计将其图案化的概念。RCNM/ACEL 结构旨在响应环境条件动态切换功能。在白天,当温度较高时,织物主要作为冷却系统运行,利用其辐射特性反射阳光并有效发射中红外辐射。到了晚上,这种织物会转变为电致发光警告信号,从而提高弱光条件下的能见度和安全性。

Fig.2 Fabrication and comprehensive analysis of ACEL/RCNM integrated dual-functional fabric. a) Schematic representation of the ACEL/RCNM integrated dual-functional fabric. b) Optical imagery depicting i) the RCNM in white color (dimensions: 5 × 20 × 0.05 cm3; scale bar = 2 cm), and ii) the combined RCNM/ACEL structure (scale bar = 1 cm). c) SEM image of RCNM with an insert showing the fiber diameter distribution. d) EDS spectroscopy images of RCNM. e) TGA curves of TPU, TPU/PDM, and RCNM nanomembrane. f) Analysis of pore area distribution across varying voltages. g) Correlation between the content of ZnS: Cu powders and the resultant brightness.

Figure 3. Optical properties and spectral analysis of advanced nanomembranes. a-c) Simulation of the scattering efficiency across the wavelength spectrum of 0.25-2.5 µm for a) TPU, b) TPU/PDMS, and c) RCNM across, with varying nanofiber diameters from 0.2 to 2 µm. d-f) Depiction of the near electromagnetic field distribution of d) TPU, e) TPU/PDMS, and f) RCNM at a targeted incident wavelength, demonstrating field interaction dynamics. g) FTIR profiles of the three nanomembranes. h) Comparative solar reflectivity of TPU, TPU/PDMS, and RCNM. i) Analysis of Mie-infrared emissivity across the three nanomembranes.

RCNM的纤维直径主要分布在 0.5 -1.8μm 之间,不同的直径分布使光纤能够与多个太阳光波段相互作用,从而增强 Mie 散射效应,并且利用纤维-颗粒-空气之间的折射率差增强反射,显着提高 RCNM 的太阳反射率。PDMS 和SiO2纳米粒子的策略性组合在大气透明度窗口内产生共振,将 RCNM 的发射率显著提高到 93.2%,使RCNM具有优异的辐射制冷性能。

Figure 4. Mechanical properties and functional characteristics of RCNM. a) Load-bearing performance of RCNM. b) Stress-strain curves for the three nanomembranes. c) Air permeability of RCNM at varying pressure levels. d) Moisture permeability and water pressure resistance for TPU nanomembrane and RCNM. e) Variation of the contact angle in RCNM with exposure to different durations of UV irradiation. f) The contact angle for RCNM after immersion in solutions of varying pH; Insert: Visualization of RCNM is immersion in acidic and basic environments. g) UV-VIS-NIR reflectivity, h) FTIR spectra, and i) mid-infrared emissivity of initial RCNM and RCMN after aging and treatment with acid and alkali solutions.

RCNM凭借其卓越的机械性能、透气透湿性、防水性及耐久性,在多种应用中展现出巨大潜力。其在纤维纺丝过程中形成的独特结构,使其具备高伸长率、高强度及良好延展性,能承受较大应力和负载。约7 μm的孔径分布利于水蒸气和空气分子通过,带来出色的透气性和水蒸气透过率,提升穿着舒适度。经PDMS和SiO2NP改性后,接触角增大,防水性增强,且能抵抗多种液体渗透。在不同pH值溶液和紫外线环境下,接触角保持稳定,光学特性也较为耐久,太阳反射率虽略有下降但仍超90%,FTIR特性和中红外发射率稳定,适用于复杂环境。

Figure 5. Performance characteristics of RCNM/ACEL integrated dual-functional fabric. a) Brightness profile of the RCNM/ACEL fabric. b) Assessment of washing resistance, and evaluating the fabric's durability after repeated laundering cycles. c) Performance under double 85 wet-hot conditions; inset: Depiction of the equipment utilized for environmental testing. d-h) Mechanical resilience of RCNM/ACEL fabric demonstrated through tests involving curling, kneading, pressure, shearing, and stretching; each depicted with a scale of 1cm. i) Correlation between frequency, voltage, and brightness. j) PL spectra of RCNM/ACEL fabric at various lower frequencies and k) corresponding CIE color coordinates.

RCNM/ACEL集成织物具有可观的发光效率,初始亮度为40.16cd/m²。其耐洗涤性强,60℃下洗涤六个周期后亮度仅降9%;在双85测试中,72小时内亮度仅降10.7%;连续运行168小时后亮度仅降4%。在卷曲、揉搓、重压、剪切等机械测试后,织物亮度稳定,反复拉伸测试也证明了其机械稳定性。其耐用性得益于镓铟合金的延展性、静电纺丝形成的坚固三维网络结构、银纳米线的连续电气连接以及PDMS封装层的保护。

Figure 6. Evaluation of daytime radiative cooling performance in practical applications. a) Daytime net cooling efficiency of RCNM with different non-radiant heat coefficients. b) Real-time temperature profiles of three samples. c) Concurrent recording of solar radiant energy (upper graph) and the corresponding temperature differential (lower graph). d) Application of RCNM to an arm, shown with infrared thermography to visualize thermal effects. e) Fifteen-minute temporal temperatures trace. f) Integrated graph of solar radiant energy recording alongside real-time temperature differentials. g) Comparative real-time temperature tracking of the RCNM, RCNM/ACEL, and ACEL fabrics. h) Detailed record of solar radiant energy and corresponding real-time temperature differentials. i) Relationship between the occupied area of ACEL in RCNM/ACEL fabrics and the radiant cooling power of that fabric during daytime.j) Nighttime net cooling efficiency of full RCNM/ACEL with different non-radiant heat coefficients.

经综合评估,RCNM在理想状态下日间辐射冷却效果可达9°C,即便在非辐射传热系数升高时也能保持4°C冷却能力。其相较于TPU纳米膜和T/C织物冷却性能更优,人体皮肤实测亦有良好降温表现。RCNM/ACEL织物虽ACEL部分温度稍高,但因占比小对整体冷却影响有限,且得益于高ATW发射率,可实现高效温度控制,适配智能纺织品及可穿戴设备的动态调温需求。

小结:本文介绍了一种创新的双功能织物,它集成了被动辐射冷却和交流电致发光显示(ACEL)功能。RCNM 织物采用一步静电纺工艺制作而成,性能卓越,太阳反射率高达 96.5%,ATW 辐射率超过 93%,与传统织物相比,体温降低了 6°C,且同时具备疏水透湿性。这种增强型热管理与 ACEL 系统相结合,实现了 40.16 cd/m² 的峰值亮度,即使在洗涤和高湿度、高温等恶劣环境条件下,仍能保持 90% 以上的亮度。这种织物还具有很高的机械稳定性,在各种压力下都能保持其发光特性。这些研究结果强调了这种织物在需要热舒适性和交互式视觉显示的可穿戴技术中的潜在应用。通过将这些功能结合到一种可调节体温并根据环境变化提供动态视觉反馈的高耐用纺织品中,这项工作为开发多功能自适应智能服装铺平了道路。

本文第一作者为浙江理工大学纺织科学与工程学院(国际丝绸学院)硕士研究生龚盈珍,通讯作者为浙江理工大学博士生导师胡毅教授。

胡毅,男,博士,教授,博士生导师。浙江理工大学纺织科学与工程学院(国际丝绸学院)副院长,主要从事非水介质染整新技术和柔性电子智能纺织品研究。以第一作者或通讯作者在 Advanced Functional Materials, Nano Letters, Energy Storage Materials, Chemical Engineering Journal等刊物上发表SCI论文60余篇,授权和转化国家发明专利30余项。获得国家级教学成果二等奖和浙江省教学成果特等奖各1项;主持获得中国纺织工业联合会教学成果一、二、三等奖,浙江省自然科学奖三等奖和中国商业联合会科技进步奖二等奖各1项。

在此,感谢浙江理工大学嵊州创新研究院基金项目(SYY2024C000008)的支持!

来源:高分子科学前沿

相关推荐