同济大学闫冰教授ACS Nano:基于共价有机框架的仿生发光传感器——听觉、味觉与嗅觉信息监测实现多模态感知

360影视 2025-01-17 14:12 2

摘要:仿生传感器是一种模拟生物系统的传感器,通过模拟人类的感知系统来提升传感器性能和灵敏度,主要是在视觉、味觉、嗅觉、听觉和触觉等方面。声音作为一种无处不在的物理现象,是情感表达、文化传递及环境感知的重要载体。然而,听力障碍者由于疾病或先天性缺陷而无法有效感知声音。

仿生传感器是一种模拟生物系统的传感器,通过模拟人类的感知系统来提升传感器性能和灵敏度,主要是在视觉、味觉、嗅觉、听觉和触觉等方面。声音作为一种无处不在的物理现象,是情感表达、文化传递及环境感知的重要载体。然而,听力障碍者由于疾病或先天性缺陷而无法有效感知声音。因此,研发高性能的仿生声学传感器具有重要的意义。味觉和嗅觉是人类感知食物的重要方式,在识别食物的种类和质量方面发挥着至关重要的作用。苦味感知在检测食物中有毒物质方面很重要,从而保护身体免受有害物质的侵害。另外,在食物变质过程中,通常会产生并释放生物胺(BAs)气体,这种气体被认为是食物变质的重要标志之一。然而,某些疾病,如感冒或上呼吸道感染,如COVID-19,可能会影响味觉和嗅觉。因此,仿生传感器的发展对于声学、味觉和嗅觉信息的监测用于多模式感知具有重要意义。

由于光信号的稳定性、制备工艺的便捷性和可重复使用性,荧光传感器在仿生传感领域潜在的科学价值和实际应用价值不容忽视。目前,合成具有优异发光性能的共价有机框架材料(COFs)并将其有效应用于仿生传感领域仍然是一个艰巨的挑战。

在本研究中,同济大学闫冰教授团队构建了四种具有不同羟基数目的COFs,而苯-1,3,5-三甲醛(BTA)配体上的羟基数目影响最终COFs的性能。以水合肼(HH)和具有一个羟基的BTA为配体制备的COF(HHBTA-OH)具有最佳的荧光性能。HHBTA-OH中的羟基与MA反应生成MA@HHBTA-OH,使其成为具有优异检测性能的味觉传感器的理想候选材料。我们将MA@HHBTA-OH与琼脂糖(AG)结合,MA@HHBTA-OH@AG作为嗅觉传感器,通过监测BAs蒸汽来评估食品的新鲜度。MA@HHBTA-OH与三聚氰胺泡沫(MF)相结合,制成了MA@HHBTA-OH@MF声学传感器。该传感器表现出极高的灵敏度(19,751.98 cps·Pa-1·cm-2)和低检测限(5.95 Hz and 1.72 dB),同时具备优良的可重复使用性和抗噪声能力。该工作以“Bionic Luminescent Sensors Based on Covalent Organic Frameworks: Auditory, Gustatory, and Olfactory Information Monitoring for Multimode Perception”为题在线发表于《ACS Nano》期刊上。

Figure 1. (a) Schematic representation of the synthesis of four COFs. (b) The modeled crystal structures and side views of COFs. (c) PXRD patterns of COFs experimental (orange), AA stacking mode (light red) and AB stacking mode (blue). (d-g) SEM images of the four COFs.

Figure 2. (a) Lminol-to-ketoamine tautomerism in COFs via proton transfer. (b) The solid-state UV-vis DRS spectra. (c) Energy-level diagrams and the HOMO-LUMO gap of COFs. (d) Luminescent intensity of four COFs. (e) Photographs of four COFs powders under daylight and 310 nm UV excitation.

Figure 3. (a) Schematic representation of the strategy for preparing MA@HHBTA-OH. (b, c) SEM pictures of MA@HHBTA-OH. (d) XRD patterns, (e) FT-IR spectra, and (f) WCA for HHBTA-OH and MA@HHBTA-OH. (g) The electrostatic potential of HHBTA-OH, MA@HHBTA-OH, and MF.

Figure 4. (a) Scheme of preparation process of MA@HHBTA-OH@MF. (b) Pictures of MF with size of 4.0 × 2.0 × 0.2 cm3. (c-e) SEM pictures of MF. (f) Pictures of MA@HHBTA-OH@MF under sunlight and UV light. (g-i) SEM pictures of MA@HHBTA-OH@MF. (j) EDS mappings of C, N and O elements of MA@HHBTA-OH@MF.

Figure 5. (a) Luminescent spectra and (b) luminescent intensity of MA@HHBTA-OH in the solution of two bitter compounds and other common interfering substances. Calibration curves of MA@HHBTA-OH toward PROP (c) and HMF (d) in different concentration ranges. Under 310 nm excitation, the intensity at 630 nm of MA@HHBTA-OH with PROP (e), and HMF (f) in the presence of other common interfering substances. (g) Decay lifetimes of emission peak of 630 nm in PROP and HMF. (h) Excitation spectrum of MA@HHBTA-OH and UV–vis absorption of PROP and HMF.

Figure 6. (a) The photos and corresponding R/G/B values in different concentration of Cad under the irradiation of 310 nm UV lamps. (b) Plot of the linear relationship between R/G of films and Cad concentrations under UV light. (c) The photos and corresponding R/G/B values upon addition of Cad under day light. (d) Plot of the linear relationship between R/G of films and Cad concentrations under day light.

Figure 7. (a) Schematic representation elucidating the sound sensing measurement process utilizing MA@HHBTA-OH@MF. (b) Optical signals of the drum sound with f = 388 Hz and SPL = 52−93 dB. (c) ∆I−SPL linear curve in SPL sensing process. (d-f) FES of MF in total sound pressure field, scattered sound pressure field, and incident sound pressure field with f = 400 Hz. (g) The recorded optical signal response of 26 English letters. (h) Optical signal responses toward the sounds of four tones of “e”. (i) Recognition signals of the word “luminescence” pronounced by male and female speakers, respectively. (j, k) Comparison of the pronunciation of “good morning” by the acoustic sensor and sound recorder. The recordings were made in quiet and noisy environments, respectively. (l) Music visualization of “Canon”.

Figure 8. (a) Schematic illustration of cough monitoring and communication system for infectious disease response. (b) Optical response signals to different coughing sounds. (c) Schematic illustration of a biological multisensory system of vision and olfactory for detecting BAs vapors. (d) Monitoring the freshness of shrimps stored at different temperatures by MA@HHBTA-OH@AG.

文章链接:

声明:仅代表作者个人观点,作者水平有限,如有不科学之处,请在下方留言指正!

来源:高分子科学前沿

相关推荐