摘要:但在2024年诺贝尔经济学奖得主、麻省理工学院校聘经济学教授达龙·阿西莫格鲁(Daron Acemoglu)看来,或许更应该引起关注的问题是:AI是否应该朝着取代人类的方向发展。
“AI是否会取代人类?”这一话题近年来备受热议。
但在2024年诺贝尔经济学奖得主、麻省理工学院校聘经济学教授达龙·阿西莫格鲁(Daron Acemoglu)看来,或许更应该引起关注的问题是:AI是否应该朝着取代人类的方向发展。
阿西莫格鲁认为,AI作为一种信息技术,无论以预测形式还是生成形式运行,其功能都是筛选海量信息并识别相关模式。需要一个行业范式去强调AI最大的优势:增强和扩展人类的能力。
但目前集中度远超以往的科技行业却采取了相反的看法,倾向于使用能够取代人类而不是辅助人类的数字工具。
他预测,在未来十年内AI取代人类工作的比例不会超过5%。如果炒作甚嚣尘上,企业纷纷采用AI来从事机器无法同样胜任的工作,可能不仅无法相应提升生产力,反而会加剧不平等。
阿西莫格鲁认为,世界需要一个以人为本的人工智能议程,在媒体、政策制定层和民间社会中构建一个新的叙事,并制定更好的法规和政策。政府需要认识到问题所在,帮助改变AI的发展方向,而不是仅在问题出现时才做出反应。
这是一个充满不确定性和困惑的时代。我们不仅要应对流行病、气候变化、各主要经济体的社会性老龄化以及日益紧张的地缘政治局势,人工智能也即将改变我们所熟知的世界。而事情将以多快的速度发生改变以及谁会最终得益,则尚未揭晓。
如果听一听业内人士或主流报纸的科技记者的说法,你可能会认为通用人工智能——能够执行任何人类认知任务的AI技术——即将到来。
相应地,关于这些惊人的能力是否会给我们带来原本无法想象的繁荣(一些不太夸张的观察家预计GDP增速将加快超过1~2个百分点),或者反过来终结人类文明,让人们沦为超级智能AI模型奴隶的问题,人们也进行了诸多辩论。
这次AI会有所不同吗?
如果看看实体经济的状况,你会发现当下与过去差别不大。目前还没有证据表明AI能够带来革命性的生产力提升。
与许多技术专家所承诺的相反,我们仍然需要放射科医生(事实上比以往更加需要)、记者、律师助理、会计师、办公室文员和人类司机。
正如我最近指出的那样,在未来十年内AI取代人类工作的比例不会超过5%。AI模型要获得大多数工作所需的判断力、多维推理能力和社交技能,同时AI和计算机视觉技术发展到可以与机器人结合执行制造和建筑等高精度物理任务的水平,都还需要相当长的时间。
当然,这些都是预测,而预测总是有可能出错的。随着业内人士对进步速度的忧虑日益强烈,也许改变游戏规则的AI突破将比预期中更快到来。
但AI的历史上其实充斥着业内人士雄心勃勃的预测。AI鼻祖马文·明斯基在20世纪50年代中期就预测说,机器将在短短几年内超越人类,虽然这种情况并未出现,他依然坚持自己的观点。1970年时他仍然坚持认为:“在3~8年内我们将拥有一台跟普通人一般智能的机器。我指的是一台能够阅读莎士比亚作品、给汽车上油、玩弄办公室政治、讲笑话、吵架的机器。到那时机器将以惊人的速度开始自我教育。几个月后它将达到天才水平,再过几个月则能力不可估量。”
类似的乐观预测在此后一再出现,但最终都在周期性的“AI寒冬”中被抛弃。那么这次会有所不同吗?
可以肯定的是,生成式AI的能力已经远远超过了行业之前所创造的一切。但这并不意味着行业预期的时间表是正确的。AI开发人员们乐于打造即将发生革命性突破的印象,以刺激需求和吸引投资者。
但即使进展速度较慢也会引发担忧,因为AI已经造成了严重破坏:换脸、操纵选民和消费者以及大规模监控只是冰山一角。AI还可以用于大规模自动化——即使这种用途意义不大。
我们已经有了在没搞清楚数字技术将如何提高生产力的情况下将其引入工作场所的例子,更不用说提高现有员工的生产力了。
在AI炒作下许多企业备感压力,急于跟风,却不知道AI如何才能帮到他们。
这种追逐潮流的做法是有代价的。在我与帕斯卡尔·雷斯特雷波的研究中,我们发现那些效果一般的自动化只会带来两败俱伤的后果。如果一项技术还不能大幅提高生产力,那么大规模推广它来替代人类完成各种任务只会带来痛苦而毫无益处。
根据我自己的预测,在AI将取代约5%工作岗位的未来十年内,其对不平等的影响会非常有限。但如果炒作甚嚣尘上,企业纷纷采用AI来从事机器无法同样胜任的工作,那么我们可能会在未能获得相应生产力提升的情况下遭遇更大的不平等。
因此我们不能排除最坏的情况:AI的变革潜力无法发挥,但下岗、信息误导和操纵却无所不在。这将是一场悲剧,不仅因为对劳动者和社会政治生活造成了负面影响,还因为这意味着错失了重大机遇。
为谁而进步?
开发一种可以辅助工人、保护我们的数据和隐私、改善信息生态系统并加强民主的不同类型AI不仅在技术上可行,也符合社会需求。
AI是一种信息技术。无论是以预测形式(例如社交媒体平台上的推荐引擎)还是生成形式(大型语言模型)运行,其功能都是筛选海量信息并识别相关模式。这种能力是解决我们问题的完美良药。
我们生活在一个信息丰富的时代,但有用的信息却很少。互联网上应有尽有(当然也包括许多你不需要的东西),但要想找到特定工作或目的所需的信息却难上加难。
有用的信息可以提高生产力,而正如大卫·奥特、西蒙·约翰逊和我所论证的那样,这在当前经济形势下比以往任何时候都更加重要。
许多职业——从护士、教育工作者到电工、水管工和其他现代手工业者——都因缺乏处理日益复杂问题的特定信息和培训而举步维艰。
为什么有些学生跟不上进度?哪些设备和车辆需要提前维护?我们如何检测飞机等复杂产品中的故障?这类信息正是AI所能提供的。
当应用于此类问题时,AI可以带来生产力提升——而且比我自己那些贫乏的预测所设想的要多得多。如果将AI用于自动化,它将取代劳动者;但如果用它来为劳动者提供更有用的信息,它就能增加对其服务的需求,从而提升他们的收入。
不幸的是有三个重大障碍横亘在这条路径上。
第一个障碍是人们对通用人工智能的迷恋。对超级智能机器的幻想促使行业忽视了AI作为一项可以帮助劳动者的信息技术的真正潜力。针对相关领域的准确知识才是真正重要的,但这却不是行业一直在投资的方向。会写莎士比亚十四行诗的聊天机器人并不能让电工完成复杂的新任务。但如果你真心相信通用人工智能即将到来,那干嘛还要费心去帮助电工呢?
问题不仅仅在于对AI的痴迷。一般来说工具应该去做一些人类不擅长高效完成的任务。锤子、计算器就是这样的东西,而在被社交媒体破坏之前的互联网也是如此。但科技行业却采取了相反的看法,倾向于使用能够取代人类而不是辅助人类的数字工具。
这在某种程度上是因为许多科技领导者低估了人类的天赋,同时夸大了人类的局限性和易犯错误程度。人类固然会犯错,但他们也会借助独特的视角、才能和认知工具去达成各项任务。相比于赞美机器的优越性,我们需要一个行业范式去强调其最大的优势:增强和扩展人类的能力。
第二个障碍是对人的投资不足。只有我们在培训和技能方面投入同样多的资金,AI才能成为增强人类能力的工具。如果大多数人无法使用AI工具或者无法获取和处理它们提供的信息,那么这些工具对工人的辅助作用就将微乎其微。人类花了很长时间才弄清楚如何应对印刷机、收音机、电视和互联网等新源头发来的信息,但AI在这方面的时间还会被压缩(即使“通用人工智能很快来临”的情境仍然大多是夸夸其谈)。
确保人类受益于AI而不是被其愚弄的唯一方法,就是在各个层面进行培训和教育投资。这意味着要超越那些投资于跟AI互补技能的陈腐建议。这当然很有必要,但却远远不够。我们真正需要的是教会学生和劳动者,如何与AI工具共存并正确使用它们。
第三个障碍是科技行业的商业模式。我们只有科技企业投资之后才能得到更优秀的AI;但该行业如今比以往任何时候都更加集中,而那些主导企业一门心思想要研究通用人工智能以及各类取代和操纵人类的应用程序。该行业的大部分收入来自数字广告——通过收集用户的大量数据好让他们沉迷于平台及其产品——以及销售实现自动化的工具和服务。
但新的商业模式不太可能自然生长。现有的企业已经建立起了庞大的帝国并垄断了资本、数据、人才等关键资源,使有抱负的新进入者日益陷入不利境地。就算有新的参与者脱颖而出,也更可能被某些科技巨头收购而不是挑战它们的商业模式。
最重要的是,我们需要制定一个抵制通用人工智能、以人为本的议程。劳动者和公民应该被赋权去推动AI朝着实现其作为一项信息技术所给出的承诺的方向发展。但要做到这一点,我们需要在媒体、政策制定圈和民间社会中构建一个新的叙事,并制定更好的法规和政策应对。政府可以帮助改变AI的发展方向,而不是仅仅在问题出现时才做出反应。但首要的是,政策制定者必须认识到问题所在。
阅读最新前沿科技趋势报告,请访问欧米伽研究所的“未来知识库”
未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问进入。
截止到12月25日 ”未来知识库”精选的100部前沿科技趋势报告
2024 美国众议院人工智能报告:指导原则、前瞻性建议和政策提案
未来今日研究所:2024 技术趋势报告 - 移动性,机器人与无人机篇
Deepmind:AI 加速科学创新发现的黄金时代报告
Continental 大陆集团:2024 未来出行趋势调研报告
埃森哲:未来生活趋势 2025
国际原子能机构 2024 聚变关键要素报告 - 聚变能发展的共同愿景
哈尔滨工业大学:2024 具身大模型关键技术与应用报告
爱思唯尔(Elsevier):洞察 2024:科研人员对人工智能的态度报告
李飞飞、谢赛宁新作「空间智能」 等探索多模态大模型性能
欧洲议会:2024 欧盟人工智能伦理指南:背景和实施
通往人工超智能的道路:超级对齐的全面综述
清华大学:理解世界还是预测未来?世界模型综合综述
Transformer 发明人最新论文:利用基础模型自动搜索人工生命
兰德公司:新兴技术监督框架发展的现状和未来趋势的技术监督报告
麦肯锡全球研究院:2024 年全球前沿动态图表呈现
兰德公司:新兴技术领域的全球态势综述
前瞻:2025 年人形机器人产业发展蓝皮书 - 人形机器人量产及商业化关键挑战
美国国家标准技术研究院(NIST):2024 年度美国制造业统计数据报告(英文版)
罗戈研究:2024 决策智能:值得关注的决策革命研究报告
美国航空航天专家委员会:2024 十字路口的 NASA 研究报告
中国电子技术标准化研究院 2024 扩展现实 XR 产业和标准化研究报告
GenAI 引领全球科技变革关注 AI 应用的持续探索
国家低空经济融创中心中国上市及新三板挂牌公司低空经济发展报告
2025 年计算机行业年度策略从 Infra 到 AgentAI 创新的无尽前沿
多模态可解释人工智能综述:过去、现在与未来
【斯坦福博士论文】探索自监督学习中对比学习的理论基础
《机器智能体的混合认知模型》最新 128 页
Open AI 管理 AI 智能体的实践
未来生命研究院 FLI2024 年 AI 安全指数报告 英文版
兰德公司 2024 人工智能项目失败的五大根本原因及其成功之道 - 避免 AI 的反模式 英文版
Linux 基金会 2024 去中心化与人工智能报告 英文版
脑机接口报告脑机接口机器人中的人机交换
联合国贸发会议 2024 年全球科技创新合作促发展研究报告 英文版
Linux 基金会 2024 年世界开源大会报告塑造人工智能安全和数字公共产品合作的未来 英文版
Gartner2025 年重要战略技术趋势报告 英文版
Fastdata 极数 2024 全球人工智能简史
中电科:低空航行系统白皮书,拥抱低空经济
迈向科学发现的生成式人工智能研究报告:进展、机遇与挑战
哈佛博士论文:构建深度学习的理论基础:实证研究方法
Science 论文:面对 “镜像生物” 的风险
镜面细菌技术报告:可行性和风险
Neurocomputing 不受限制地超越人类智能的人工智能可能性
166 页 - 麦肯锡:中国与世界 - 理解变化中的经济联系(完整版)
未来生命研究所:《2024 人工智能安全指数报告》
德勤:2025 技术趋势报告 空间计算、人工智能、IT 升级。
2024 世界智能产业大脑演化趋势报告(12 月上)公开版
联邦学习中的成员推断攻击与防御:综述
兰德公司 2024 人工智能和机器学习在太空领域感知中的应用 - 基于两项人工智能案例英文版
Wavestone2024 年法国工业 4.0 晴雨表市场趋势与经验反馈 英文版
Salesforce2024 年制造业趋势报告 - 来自全球 800 多位行业决策者对运营和数字化转型的洞察 英文版
MicrosoftAzure2024 推动应用创新的九大 AI 趋势报告
DeepMind:Gemini,一个高性能多模态模型家族分析报告
模仿、探索和自我提升:慢思维推理系统的复现报告
自我发现:大型语言模型自我组成推理结构
2025 年 101 项将 (或不会) 塑造未来的技术趋势白皮书
《自然杂志》2024 年 10 大科学人物推荐报告
量子位智库:2024 年度 AI 十大趋势报告
华为:鸿蒙 2030 愿景白皮书(更新版)
电子行业专题报告:2025 年万物 AI 面临的十大待解难题 - 241209
中国信通院《人工智能发展报告(2024 年)》
美国安全与新兴技术中心:《追踪美国人工智能并购案》报告
Nature 研究报告:AI 革命的数据正在枯竭,研究人员该怎么办?
NeurIPS 2024 论文:智能体不够聪明怎么办?让它像学徒一样持续学习
LangChain 人工智能代理(AI agent)现状报告
普华永道:2024 半导体行业状况报告发展趋势与驱动因素
觅途咨询:2024 全球人形机器人企业画像与能力评估报告
美国化学会 (ACS):2024 年纳米材料领域新兴趋势与研发进展报告
GWEC:2024 年全球风能报告英文版
Chainalysis:2024 年加密货币地理报告加密货币采用的区域趋势分析
2024 光刻机产业竞争格局国产替代空间及产业链相关公司分析报告
世界经济论坛:智能时代,各国对未来制造业和供应链的准备程度
兰德:《保护人工智能模型权重:防止盗窃和滥用前沿模型》-128 页报告
经合组织 成年人是否具备在不断变化的世界中生存所需的技能 199 页报告
医学应用中的可解释人工智能:综述
复旦最新《智能体模拟社会》综述
《全球导航卫星系统(GNSS)软件定义无线电:历史、当前发展和标准化工作》最新综述
《基础研究,致命影响:军事人工智能研究资助》报告
欧洲科学的未来 - 100 亿地平线研究计划
Nature:欧盟正在形成一项科学大型计划
Nature 欧洲科学的未来
欧盟科学 —— 下一个 1000 亿欧元
欧盟向世界呼吁 加入我们价值 1000 亿欧元的研究计划
DARPA 主动社会工程防御计划(ASED)《防止删除信息和捕捉有害行为者(PIRANHA)》技术报告
兰德《人工智能和机器学习用于太空域感知》72 页报告
构建通用机器人生成范式:基础设施、扩展性与策略学习(CMU 博士论文)
世界贸易组织 2024 智能贸易报告 AI 和贸易活动如何双向塑造 英文版
人工智能行业应用建设发展参考架构
波士顿咨询 2024 年欧洲天使投资状况报告 英文版
2024 美国制造业计划战略规划
【新书】大规模语言模型的隐私与安全
人工智能行业海外市场寻找 2025 爆款 AI 应用 - 241204
美国环保署 EPA2024 年版汽车趋势报告英文版
经济学人智库 EIU2025 年行业展望报告 6 大行业的挑战机遇与发展趋势 英文版
华为 2024 迈向智能世界系列工业网络全连接研究报告
华为迈向智能世界白皮书 2024 - 计算
华为迈向智能世界白皮书 2024 - 全光网络
华为迈向智能世界白皮书 2024 - 数据通信
华为迈向智能世界白皮书 2024 - 无线网络
安全牛 AI 时代深度伪造和合成媒体的安全威胁与对策 2024 版
2024 人形机器人在工业领域发展机遇行业壁垒及国产替代空间分析报告
《2024 年 AI 现状分析报告》2-1-3 页.zip
万物智能演化理论,智能科学基础理论的新探索 - newv2
世界经济论坛 智能时代的食物和水系统研究报告
生成式 AI 时代的深伪媒体生成与检测:综述与展望
科尔尼 2024 年全球人工智能评估 AIA 报告追求更高层次的成熟度规模化和影响力英文版
计算机行业专题报告 AI 操作系统时代已至 - 241201
Nature 人工智能距离人类水平智能有多近?
Nature 开放的人工智能系统实际上是封闭的
斯坦福《统计学与信息论》讲义,668 页 pdf
国家信息中心华为城市一张网 2.0 研究报告 2024 年
国际清算银行 2024 生成式 AI 的崛起对美国劳动力市场的影响分析报告 渗透度替代效应及对不平等状况英文版
大模型如何判决?从生成到判决:大型语言模型作为裁判的机遇与挑战
毕马威 2024 年全球半导体行业展望报告
MR 行业专题报告 AIMR 空间计算定义新一代超级个人终端 - 241119
DeepMind 36 页 AI4Science 报告:全球实验室被「AI 科学家」指数级接管
《人工智能和机器学习对网络安全的影响》最新 273 页
2024 量子计算与人工智能无声的革命报告
未来今日研究所:2024 技术趋势报告 - 广义计算篇
科睿唯安中国科学院 2024 研究前沿热度指数报告
文本到图像合成:十年回顾
《以人为中心的大型语言模型(LLM)研究综述》
经合组织 2024 年数字经济展望报告加强连通性创新与信任第二版
波士顿咨询 2024 全球经济体 AI 成熟度矩阵报告 英文版
理解世界还是预测未来?世界模型的综合综述
GoogleCloudCSA2024AI 与安全状况调研报告 英文版
英国制造商组织 MakeUK2024 英国工业战略愿景报告从概念到实施
花旗银行 CitiGPS2024 自然环境可持续发展新前沿研究报告
国际可再生能源署 IRENA2024 年全球气候行动报告
Cell: 物理学和化学 、人工智能知识领域的融合
智次方 2025 中国 5G 产业全景图谱报告
上下滑动查看更多
来源:人工智能学家