探索宇宙深处的语言:引力波通信技术展望

360影视 2025-02-08 14:20 3

摘要:当2015年天文学家首次探测到理论预言已久的引力波时,这为人类开启了一扇探索宇宙的全新窗口。在此之前,天文学研究完全依赖于各类电磁波谱的观测。

这幅示意图展示了两个超大质量黑洞的合并过程,以及它们在螺旋接近时向外辐射的引力波涟漪。(图片来源:LIGO/T. Pyle)

引力波通信的可能性

当2015年天文学家首次探测到理论预言已久的引力波时,这为人类开启了一扇探索宇宙的全新窗口。在此之前,天文学研究完全依赖于各类电磁波谱的观测。

电磁波同样是我们日常通信的主要载体,其中以无线电波应用最广。那么,引力波是否可能成为新型通信媒介?

这一构想虽极具吸引力,但已远超当前技术实现能力。尽管如此,进行此类假设性研究仍具科学价值——毕竟,未来的到来往往比我们预期的更快。

最新研究探讨了这一设想的理论基础及未来应用前景。相关论文《引力通信:基本原理、技术前沿与未来展望》已发表于预印本平台arXiv.org(开放获取学术论文存储库),作者为剑桥大学工程系"万物互联研究组"的王厚天富(Houtianfu Wang)与奥兹古尔·B·阿坎(Ozgur B. Akan)。

"引力波能在浩瀚星际距离中保持稳定的信号质量,使其成为超越太阳系任务的理想载体。"

——王厚天富 & 奥兹古尔·B·阿坎

研究团队在论文中阐释:"引力波的发现为天文学与物理学开辟了全新观测维度,为探索宇宙深空与极端天体物理现象提供了独特手段。除推动天文研究外,其作为新型通信范式的潜力亦引发广泛关注。"

现有电磁通信存在固有缺陷:信号强度随距离衰减限制覆盖范围;大气扰动导致无线电波散射失真;存在视线传播限制;太阳活动与空间环境干扰显著。

引力波通信(GWC)展现出突破这些瓶颈的潜力:在极端环境下保持稳定性,超远距离传输能量损耗极低,可规避电磁通信(EMC)的散射、畸变与反射问题。更有趣的是,利用自然产生的引力波可大幅降低人工生成所需能量。

作者强调:"引力通信(即引力波通信)有望突破传统电磁通信的物理限制,实现极端环境与广袤星域间的可靠信息传输。"

引力波艺术概念图(图片来源:NASA)

实现该技术的关键在于实验室生成人工引力波(GWs)——这正是当前引力波研究的核心目标。由于引力波强度极弱,仅巨大质量体高速运动方可产生。即便源自数十亿倍太阳质量的超大质量黑洞(SMBHs)合并事件,其引发的时空涟漪仍需LIGO等超高灵敏度设备方能捕捉。

生成具备可探测强度的引力波是实现该技术的首要前提。

研究人员指出:"人工引力波生成是推动引力通信发展的基石,亦是当代技术攻坚的首要挑战。学界已探索多种创新路径,包括机械共振装置、旋转装置、超导材料、粒子束对撞,以及高能激光与电磁场调控技术。"

尽管引力波通信已积累丰富理论成果,工程实践仍处起步阶段。论文系统梳理了弥合理论与应用鸿沟所需的关键研究方向。

值得注意的是,虽然实验室无法复现黑洞合并级别的引力波事件,但早至1960年(远在引力波被实际探测之前),科学家便已开始思考人工生成引力波的可能性。

OzGrav/Swinburne 一张灵感来源于黑洞与中子星合并事件的艺术作品

最初的尝试采用旋转质量。然而,产生引力波所需的转速难以达到,一部分是因为材料不够结实。科学家也考虑过使用压电晶体、超流体、粒子束、甚至高功率激光器。然而,这些方式仅仅存在于理论之中,由于缺乏合适的材料,无法付诸实践。科学家们认为,有一些实验产生了引力波,但是太微弱了,没办法检测到。

“高频引力波,常常由较小质量或尺寸的物体产生,因此在实验室条件下,可人工合成。但由于它们幅度过低,现有检测器不够灵敏,因此至今未检测到。”作者这样解释。

因此,我们需要更高级的检测技术,或者使用一些方法,能够利用现有的检测能力,来测出生成的引力波。现有的技术致力于从天文事件中检测引力波。作者认为,“研究应该专注于设计新的检测器,能够检测更大的频率与幅度范围。”

尽管引力波可以规避电磁波通信的诸多问题,它们并不是完美的。由于可以穿越很远的距离,引力波通信在与高密物质、宇宙结构、磁场和星际物质等相互作用时,会面临衰减、相位失真、极化偏移的问题。这不仅会降低信号的质量,也会使解码更加复杂。

本概念图展示了引力波[1]传播过程中所受影响。“信号首先会受到大尺度的影响,如引力和宇宙学频率偏移;其次,信号广范围受宇宙膨胀和弱散射效应影响,继而发生振幅衰减。随后,更多特定局部影响因素致使信号发生极性变化,最终,引力透镜和其它微观尺度现象会诱发信号的相位变化及衰减效应,导致信号局部失真。此外,接收端附近可引入附加噪声。”作者写道。

图片来源:Wang and Akan, 2025

为了能对引力波加以利用,我们需要找到相应的调制方法。信号调制在通信过程中至关重要。你可以在所有的汽车收音机上看到“FM”和“AM”的字样。AM代表“幅度调制”,FM代表“频率调制”。而放眼引力波,我们要如何将它调制成有意义的信息呢?

“近期的有关研究中探索了多种方法,包括基于天体物理学现象的幅度调制方法(AM),基于暗物质媒介的频率调制方法(FM),超导材料操纵法和理论性的非度量方法。”作者写道。然而,上述每种方法都承载厚望,却面临着重重阻碍。

正比如我们能够构建出使用暗物质调制引力波信号的理论,却对暗物质为何物一无所知。“涉及到超轻量暗物质(ULDM)[2]的频率调制技术立足于对暗物质的性质和分布特点的不确定假设上。”作者鞭辟入里地指出了一个被有意忽略的事实。

引力波通信似乎遥不可及,然而其中蕴含的巨大希望让科学家们不愿意放弃它。在深空通讯中,电磁波通讯受制于遥远的距离和种种宇宙现象带来的干扰,引力波通讯则能够解决这些阻碍因素。

文章所涉及专有名词及参考篇目

[1]GW:重力波(gravity wave) | 天文学名词 | Astronomical Terms

[2]ULDM:超轻量暗物质|自相互作用超轻暗物质中的动摩擦,arXiv - PHYS - High Energy Physics - Phenomenology - X-MOL

[3]孙光辉,杨圣.引力波多信使天文学研究进展[J].河南科学,2025,43(01):56-66.

[4]倪维斗.空间引力波探测现状与展望[J].中国科学:物理学 力学 天文学,2024,54(07):6-67.

图片显示了GWC(引力波通信)如何在我们的太阳系和星际通讯中得到应用。在星际间的长距离旅程中,传统通信会逐渐消失,而GWC不会。图片来源,Wang和Akan,2025。

一种更好的跨越长距离的通讯方式对于深空探测至关重要,而GWC正我们所需要的。

作者写道:“引力波可以在远距离中保持连续的信号质量,这使它适合执行在太阳系之外的任务。”

实用引力波通信还有很长的路要走。然而,曾经仅仅是理论的引力波通信,正逐渐转向实际。

Wang和Akan在结论中写道:“引力通信,作为一个具有极大潜力的前沿研究方向,正逐渐

从理论探索向实际应用转变。”这种转变将取决于艰苦的工作和未来的突破。

这对儿研究员明白,要实现这个目标,需要他们进行更多更辛苦的科研工作。Wang和Akan的论文十分的详尽和全面,并且,他们希望这篇论文将会成为引力通信研究工作的催化剂。

Wang和Akan总结道:“尽管一个完整的实用引力波通信系统现在仍难以实现,但是我们旨在利用这份调查研究,来强调开发实用GWC系统的可能性,并促进深入的的研究和创新,尤其是在空间通信的场景中。”

PART 2

空间,包括位置和方向,是一个三维连续区。在经典物理学中,物理空间经常被设想为三个线性维度。现代的物理学家通常将空间和时间放在一起,认为是无线四维连续区的一部分,这个无线四维连续区被称为时空。认识物理宇宙的根本重要性是空间的概念。然而,分歧在哲学家中持续地出现,争议点在于:空间自己本身是否是一个独立存在体,或是独立存在体之间的关系,亦或是概念框架的一部分。

在十九和二十世纪,数学家开始检验非欧几里得几何体,在非欧几里得几何体中,空间是弯曲的,而非欧几里得空间的平直的状态。根据阿尔伯特·爱因斯坦广义相对论的理论,引力场周围的空间会偏离欧几里得空间。引力场的实验测试证明,非欧几里得几何体为空间形态提供了一个更好的模型。

BY: Evan Gough

FY:Astronomical volunteer team

如有相关内容侵权,请在作品发布后联系作者删除

转载还请取得授权,并注意保持完整性和注明出处

来源:天文在线

相关推荐