免费资料下载:SiCMOSFET短路特性以及短路保护方法

360影视 欧美动漫 2025-03-11 18:17 2

摘要:在光伏逆变器、车载充电器及牵引逆变器等应用领域中,由第三代半导体材料碳化硅(SiC)制成的SiC MOSFET正逐步替代由传统硅基(Si)制成的Si IGBT。这是因为碳化硅(SiC)材料相比传统硅(Si)材料具有更优越的物理特性,使得SiC MOSFET在高

免费资料下载:SiC MOSFET短路特性以及短路保护方法###

摘要

在光伏逆变器、车载充电器及牵引逆变器等应用领域中,由第三代半导体材料碳化硅(SiC)制成的SiC MOSFET正逐步替代由传统硅基(Si)制成的Si IGBT。这是因为碳化硅(SiC)材料相比传统硅(Si)材料具有更优越的物理特性,使得SiC MOSFET在高功率、高频率应用中表现更优,能显著提升设备效率并实现轻量化的系统设计。但SiC MOSFET和Si IGBT的器件特性存在差异——两者在短路故障时的短路耐受能力不同,这对保护电路的响应速度提出了更高要求。

本篇应用笔记从SiC MOSFET的器件特性出发,分析其与Si IGBT在故障响应上的本质差异的原因,并提出针对性保护策略。最后结合纳芯微自主研发的栅极驱动技术,详细阐述去饱和检测的设计方法。

01

SiC MOSFET短路特性介绍

在电力电子的许多应用中,短路故障是常见的工况,这就要求功率器件具备短时耐受能力,即可以在一定的时间内承受短路电流而不发生损坏。Si IGBT 通常的短路能力为5-10μs,而SiC MOSFET的短路耐受时间普遍较短(一般为2μs左右)。

Si IGBT与SiC MOSFET的短路能力的差异主要体现在以下两方面:

1)在相同阻断电压和电流额定值的情况下,SiC材料具有较高的临界击穿场强,基于这一特性,SiC MOSFET的芯片面积相较于Si IGBT更小,能实现更高的电流密度,但这也导致发热更为集中。

2)SiC MOSFET 与Si IGBT的输出特性存在差异。如图1.1所示,IGBT通常情况下在饱和区工作;当发生短路时,集电极电流IC迅速增加,从饱和区急剧转为线性区,且集电极电流不受VCE电压的影响,因此短路电流以及功耗增加会受到限制。而对于SiC MOSFET,如图1.2所示,它在正常工作期间处于欧姆区;当发生短路时,从欧姆区进入饱和区的拐点并不显著,且饱和区电流随VDE电压升高而增大,导致器件的电流以及功耗增加不受限制。因此SiC MOSFET的短路保护设计尤为重要。

图1.1 IGBT输出特性曲线

图1.2 SiC MOSFET输出特性曲线

02

SiC MOSFET短路保护方法

短路保护对于保证系统稳健运行以及充分发挥器件性能非常重要,合格的短路保护措施不仅能够快速响应并关断器件,还能有效避免误触发情况的发生。常见的短路保护方式分为电压检测和电流检测两种类型:电流检测通常借助分流电阻或者SenseFET的方式;电压检测采用退饱和保护,也就是DESAT保护。以下是对这三种短路保护方法的介绍,并阐明了各自的优缺点。

2.1.分流电阻检测

图2.1显示了一种常见的电流检测方案,在电源回路的MOSFET源极串联一个检测电阻ROC,当电流流过电阻ROC会产生一个电压VOC,如果检测得到的电压大于逻辑门电路的阈值电压VOCTH,则会产生一个短路信号OC Fault,与此同时驱动器关闭OUT输出。

图2.1 过流检测电路1

分流电阻检测电流的方案简单明了、易于理解,具备出色的通用性,可以在任何系统中灵活应用。为了保证检测信号的精准度,需要选择高精度电阻以及快速响应的ADC电路;同时为了防止保护信号误触发,需要在比较器前加入适当的滤波电路。该方案可以采用电阻电容以及比较器的分立元器件搭建实现,也可以选择集成OC保护功能的驱动IC芯片。

针对PFC电路,可对电流检测电阻的位置进行调整,图2.2展示了一种负压阈值过流检测的方法。以Boost-PFC这类电路结构为例,在功率的返回路径中,电流检测电阻ROC检测得到的电压为负电压,当检测电压小于设置的阈值电压VOCTH时,保护信号将被触发,此时驱动器输出引脚会输出关断信号。

图2.2 过流检测电路2

这种方案的缺点在于电阻带来额外的功率损耗,在大功率系统中,大电流流过检测电阻会产生较大的功率损耗;而在小功率系统中,则需要更大的电阻来保持检测信号的准确性,这同样也会影响系统效率。同时,如图2.1所示的方案,检测电阻带来的压降对功率器件的栅-源极电压造成影响,此外,图2.2所示的方案还存在拓扑的局限性。

2.2.带电流检测的功率器件

如图2.3所示,有一种带Sense功能的功率器件,其中,SenseFET集成在功率模块内,与主器件并联。通过使用高精度的分流电阻,可对SenseFET的电流进行监测,如此一来,检测到的电流与器件电流同步。

图2.3 SenseFET

集成在功率模块内部的SenseFET,因寄生电感小,受到噪声的影响小。但是带SenseFET的电源模块存在明显劣势:一方面,其成本较高,会增加系统整体成本;另一方面,市场上这类器件的种类较少,可替代性较低。

2.3.退饱和检测

2.3.1.DESAT功能介绍

退饱和检测的本质是电压检测,当器件发生短路时,器件漏极和源极两端的电压会异常升高,因此可以通过比较器件正常导通时和短路时的漏源极电压作为短路判断的依据。

当器件开通且正常工作时,SiC器件两端的电压可能在1V左右,芯片内部集成的电流源IDESAT通过DESAT引脚,流经电阻RDESAT和高压二极管DDESAT至MOSFET的漏极,此时电容CBLANK两端的电压为SiC MOSFET漏源极压降、高压二极管DDESAT两端压降和电阻RDESAT两端压降之和。

图2.4

当短路发生时,SiC MOSFET的漏源极电压迅速上升,高压二极管DDESAT反偏,内部电流源IDESAT通过DESAT引脚给外部电容CBLANK充电;当电容CBLANK两端电压超过内部比较器的阈值电压VT(DESAT),就会触发短路保护。

想了解纳芯微栅极驱动技术下的

去饱和检测设计方法?

来源:同花顺财经

相关推荐