摘要:本文,吉林大学Muhammad Imran Farid、吴文征 教授等在《COMPOS STRUCT》期刊发表名为“Bio-inspired hybrid composite fabrication 3D-printing approach for multi
1成果简介
本文,吉林大学Muhammad Imran Farid、吴文征 教授等在《COMPOS STRUCT》期刊发表名为“Bio-inspired hybrid composite fabrication 3D-printing approach for multifunctional flexible wearable sensors applications”的论文,研究为可穿戴应用开发了一种受生物启发的混合多功能柔性传感器。该混合传感器采用熔融沉积成型(FDM)三维打印技术制造,并融入了重大的技术创新。该传感器集成了热塑性聚氨酯(TPU-base core body)长丝、石墨烯和聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)PEDOT:PSS 复合材料,利用一种新型浸涂技术来创建高宽比通道。重要的是,我们开发了一种新方法,用于补偿 FDM 印刷过程中桥接层的下垂,这是实现精确微结构的一大挑战。展示了其在应变、温度、压力和健康监测方面的潜力。
结果表明,在拉伸应变为 30% 时,测量因子(GF)高达约4033.2,可检测低至 0.01% 的应变,并实现 250% 的拉伸性。此外,它对压力范围(最大 150 %,最小 10 Pa)、动态拉伸(2、6、9、10、18、21 mm)和热性能(0-90 °C)都很敏感。随后,我们建议进行现场监测;传感器检测人体细微和剧烈运动的能力得到了强调,这表明它适用于包括细微运动在内的身体变形。这种方法结合了这些关键的制造创新,为先进的可穿戴传感器铺平了道路,这种传感器能够检测各种人体运动,适用于各种医疗保健应用。
2图文导读
图1.柔性多功能传感器的混合制造方法序列示意图。
图2. (a) X-ray diffraction (XRD) patterns of the TPU@Graphene/PEDOT: PSS-made composite (b) attenuated total reflectance (ATR) fourier transform infrared spectrum of the TPU@Graphene/PEDOT: PSS-made composite (c) 3D profilometry (d) CLSM investigation of hybrid-coated TPU surface morphology and roughness.
图3. Physical characterization of (a-l) FESEM images reveals the morphological appearances of the patterned TPU@Graphene/PEDOT: PSS 3D-printed hybrid composite.
图4. Electromechanical characterization of strain sensor; (a) under varying strain circumstances emphasizing mechanical durability (b) strain angles showcasing deformation response (c) strain distribution under mechanical loading, revealing uniformity and adaptability (d) energy absorption profile and energy dissipation capabilities (e) electromechanical response under varying stretch levels, indicating strain sensitivity and signal stability (f) GF illustrating high sensitivity and linearity (g) the mechanism of crack propagation during stretching (h) length of the stretched at 2, 6, 9, 10, 18 and 21 mm (i) gauge factor (j) relative change in resistance of the strain values ranging from 0 to 30 % (k) dynamic strain response with increasing strain level (30 % to 200 %) (l) dynamic capacitance response of pressure sensor rise and fall times at varying step heights (m) stable and sensitive behavior under a strain of 0.5 % (n) incremental strain changes proportional resistance (o) dynamic response to pre-strain of 250 % with cyclic stresses of 1 % and 5 %.
图5. Multifunctional characterization measurement; (a) response of the temperature sensor at hot plate temperature range (b) resistance repeatability and stability across several (0 to 90 °C) temperature cycles (c) touch sensitivity distinguishing soft, hard, and dual touches (d) pressure sensitivity ranging measurement from 1-150 kPa (e) sensor capacitance response under bending and straightening conditions (f-g) pulse rate measurement of a human subject at rest and post-exercise.
图6. (a) sensor response for minor and extensive chewing (b) resistance varies with eye movement from open to closed (c) consistent patterns during multiple chewing cycles (d) precise analysis of mouth actions (e) detection of forehead frowning (f) measurements of deformations triggered by the human body.
图7. Bio-inspired hybrid composite sensor for real-time muscle activity monitoring in rodents (a) hybrid-sensor mounted for muscle movement monitoring (b) voltage reduction and mechanical mismatch at the electrode-tissue interface during electrical stimulation (c) sensor calibration spanning post-anesthesia recovery to functional gait (d) exercise of the muscles and sensor approach/retreat entities (e) rat dynamic locomotion patterns; TO and FRO movement (f) identifying among generated and spontaneous stimulation of muscles.
3小结
本研究提出了一种新颖、可扩展的方法,利用 FDM 三维打印 TPU@Graphene/PEDOT:PSS混合复合材料。我们的方法结合了 TPU 的柔韧性和 PEDOT:PSS的传导性,并通过石墨烯滴涂层增强了传导性,即使在大幅变形的情况下也能实现稳健的传感。
主要发现包括:应变范围广(0-250%),灵敏度高(低于 30%)(GFs≈7.07 for low, moderate≈233.07, and remarkable≈4033.2, respectively),耐久性好(在应变为 100 % 的情况下循环 6000 次),循环拉伸(2、6、10、18、21 毫米),稳定性好,动态应变响应(30、50、100、200 %)。我们成功测量了动态应变(30%-200%),并检测到了脉搏、声带振动和身体运动等生理信号。这项研究通过三项关键创新脱颖而出:
(1) 在单一柔性基底上逐层集成多种传感模式,这是对现有热塑性聚氨酯基底传感器的重大突破;
(2) 采用石墨烯涂层热塑性聚氨酯层的多功能传感器设计,使传导性和稳定性提高了十倍;
(3) 能够同时测量应变、温度和压力,超越了传统柔性导体的功能。
这种多参数传感功能得益于我们在 FDM 印刷和浸涂过程中采用的独特的逐层涂层工艺,从而实现了卓越的导电性和拉伸性。在应用和性能方面,传感器在医疗保健领域大有可为,可实现可穿戴技术的连续监测。未来的研究将侧重于可扩展性、成本效益和实际可靠性,以实现商业化。整合无线通信进行远程监控是另一个关键方向。应对这些挑战将充分释放该技术在不同应用领域的潜力。
文献:
来源:材料分析与应用
来源:石墨烯联盟