心血管疾病与代谢异常专题|糖尿病心脏自主神经病变的研究进展

360影视 欧美动漫 2025-03-25 21:06 3

摘要:作者单位:100730 北京医院内分泌科 国家老年医学中心 中国医学科学院老年医学研究院;100730 北京大学第五临床医学院;100730 中国医学科学院 北京协和医学院研究生院

中国心血管杂志

2025

Chinese Journal of Cardiovascular Medicine

本刊为北大《中文核心期刊要目总览》2023年版入编期刊、科技期刊世界影响力指数(WJCI)报告2024收录期刊、中国科技核心期刊、武大(RCCSE)核心期刊,欢迎来稿!

photo by qiuying

糖尿病心脏自主神经病变的研究进展

Research progress of cardiovascular autonomic neuropathy in diabetes

罗彦相 张佳 蔡青云 郭立新 潘琦

作者单位:100730 北京医院内分泌科 国家老年医学中心 中国医学科学院老年医学研究院;100730 北京大学第五临床医学院;100730 中国医学科学院 北京协和医学院研究生院

通信作者:潘琦,电子信箱:panqi621@126.com

引用本文:

罗彦相,张佳,蔡青云,等. 糖尿病心脏自主神经病变的研究进展[J]. 中国心血管杂志,2025,30(1):16-21. DOI:10.3969/j.issn.1007-5410.2025.01.004.

糖尿病自主神经病变是糖尿病神经病变之一,是指在糖尿病或糖尿病前期代谢紊乱的情况下,排除其他原因后自主神经系统的紊乱,多伦多共识将心血管自主神经病变(cardiovascular autonomic neuropathy,CAN)定义为心血管系统自主控制功能受损[1]。CAN早期可能无症状或症状具有非特异性,常被忽视和误诊,进展性CAN则会增加心血管疾病、慢性肾脏病和脑卒中的风险[2-5],严重影响患者的生活质量。本文对CAN的流行病学、发病机制、临床表现和治疗进展进行综述,旨在为CAN患者的诊治提供临床参考。

01 CAN的流行病学

CAN在1型糖尿病(type 1 diabetes mellitus,T1DM)患者中的患病率在29%~54%之间,在2型糖尿病(type 2 diabetes mellitus,T2DM)患者中的患病率在12%~73%之间[6]。在我国的T1DM和T2DM患者中CAN的患病率分别为61.6%和62.6%[7]。研究提示,糖尿病前期[空腹血糖受损和(或)糖耐量异常]和代谢综合征患者CAN的患病率增加。在两项以人群为基础的研究中,糖尿病前期患者CAN的患病率在9%~17.7%之间,均高于同一研究中报道的正常糖耐量人群[8]。而代谢综合征患者中CAN的患病率为24%,CAN与包括高血压和肥胖在内的代谢综合征成分相关[9],这些危险因素通过高胰岛素血症驱动的外周和中枢机制以及化学反射上调介导交感神经激活,进而出现早期CAN。此外,糖尿病或糖尿病前期引起的高血糖也会通过多种机制,包括线粒体功能障碍和损伤性活性氧(reactive oxygen species,ROS)的形成,导致或加重CAN[9]。CAN发生的机制尚未完全阐明,高糖和高脂血症可导致晚期糖基化终末产物(advanced glycation end products,AGE)介导的炎症、氧化应激和ROS增加,从而诱导神经细胞损伤、己糖胺、蛋白激酶C和多元醇途径的激活及随后的渗透和氧化应激,以及糖尿病微血管病变引起的神经元缺血[6]。近期研究发现,胶原转换与T1DM的CAN相关,尤其是Ⅵ型胶原蛋白,可能与其副产物促炎症和增殖特性诱发的神经功能障碍有关[10]。

2.2 危险因素

除了年龄和糖尿病病程,其他已确定的与糖尿病相关的CAN预测指标包括血糖控制水平、吸烟史、高血压、高脂血症和糖尿病慢性并发症,如糖尿病视网膜病变、糖尿病周围神经病变和糖尿病肾病,T2DM相关的危险因素主要有肥胖和高胰岛素血症[11]。随着实时连续血糖监测的应用,研究发现血糖变异性(glycemic variability,GV)、血糖目标范围内时间(time in range,TIR)均与CAN相关[12-13],描述GV的指标包括变异系数、标准偏差、血糖偏移的平均振幅、高血糖指数和低血糖指数等。GV可增加ROS,激活核苷酸结合结构域富含亮氨酸重复序列和含热蛋白结构域受体3(NLRP3)炎症小体,抑制自主神经节突触传递,从而导致CAN[14],其中主要与高血糖引起的GV增加有关[15]。而血糖高于目标范围内时间(time above range,TAR>180 mg/dl)每增加10%也与CAN的存在(OR=1.141,97.5%CI:1.01~1.29)和CAN的严重程度(OR=1.13,97.5%CI:1.01~1.26)独立相关[16]多个基因以及单核苷酸多态性可能决定了CAN的遗传易感性,其中几个基因被鉴定参与了内皮功能障碍(ACE)、氧化亚硝化应激(MTHFRGPX1CAT)和脂质代谢(TCF7L2)[6,17]。一项全外显子组测序结果提示,与T2DM神经病变风险增加显著相关的是RMI2MYBPHL基因的变体,与风险减少相关的是MVB12BRXRA基因的变体,这些检测可为CAN的早期发现提供依据[18]。CAN的临床表现是不断进展的,心率变异性(heart rate variability,HRV)降低是亚临床CAN的最早表现。此外,还可表现为运动耐量下降,即心率、血压和心排血量对运动的反应障碍。晚期由于心脏迷走神经和交感神经功能紊乱,可出现心率异常和心脏及血管血流动力学异常,包括静息心动过速、运动不耐受、直立性低血压(orthostatic hypotension,OH)和无症状性心肌梗死等,可累及多器官系统[6]

3.2 临床影响

CAN可增加心血管疾病、慢性肾脏病和脑卒中的风险。最近糖尿病心血管风险控制行动(Action to Control Cardiovascular Risk in Diabetes,ACCORD)的两项T2DM前瞻性队列研究[2-3]提示,合并CAN的患者发生无症状性心肌梗死的风险是无CAN患者的1.9倍(HR=1.91,95%CI:1.14~3.20),发生心力衰竭的风险是无CAN患者的2.7倍(aHR=2.65,95%CI:1.57~4.48)。另一项T2DM的前瞻性队列研究[19]提示,CAN与增加40%的总心血管事件(cardiovascular events,CVEs)/全因死亡率风险相关,低HRV与2倍的CVEs/全因死亡率风险相关。关于T1DM的预防糖尿病早期肾损伤(Preventing Early Renal Loss in Diabetes,PERL)研究和T2DM的ACCORD研究提示,合并CAN的患者发生肾小球滤过率下降(≥40%)的风险更高(PERL:HR=2.5,95%CI:1.15~5.45;ACCORD:HR=1.54,95%CI:1.28~1.84)[4]。合并CAN的患者发生脑卒中的风险也更高(HR=5.70,95%CI:2.49~13.08)[5]。值得注意的是,CAN还可增加低血糖发生的风险,不论是首次低血糖事件还是复发性低血糖事件。在标准血糖管理组中,与无CAN的参与者相比,合并CAN的患者首次发生严重低血糖事件和复发性低血糖事件的HRs分别为1.58和1.96,在强化血糖管理组中分别为1.10和1.24[20]。低血糖引起交感神经活动增强,通过增加心率和收缩压来影响心血管系统。然而在ACCORD研究中发现,T2DM患者既往发生严重低血糖与校正的QT间期(corrected QT interval,QTc)延长的风险增加相关(RR=1.66,95%CI:1.16~2.38),但并不依赖于其他危险因素,如CAN[21]。总之,CAN可增加糖尿病心血管病、肾病、脑卒中和低血糖的风险,早期筛查和诊断至关重要。

3.3 诊断评估

3.3.1 筛查

[1,22-24]推荐了CAN的筛查人群(表1),我国糖尿病神经病变诊治指南推荐对有微血管和神经并发症的糖尿病患者及无症状性低血糖的患者进行CAN的症状和体征的评估[25-26],可以采用HRV、体位变化时血压测定和24 h动态血压监测等方法协助诊断。

表1 科学学会关于在临床实践中筛查和诊断CAN的指南

3.3.2 症状和体征

CAN的诊断包括对症状和体征的评估,自主症状描述及其简化的84个问题复合自主症状评分(Composite Autonomic Symptom Score,COMPASS)和复合自主症状评分31(COMPASS 31)调查问卷是常用的评估症状的问卷,然而,研究提示与T1DM相比,COMPASS 31与T2DM中CAN的相关性更弱[27]。静息性心动过速、OH、QT间期延长和动态血压监测呈反杓型是CAN的典型表现,存在这些症状或体征都应建议患者进行CAN的诊断测试。

3.3.3 心血管自主神经反射试验

多伦多共识推荐心血管自主神经反射试验(cardiac autonomic reflex texts,CARTs)作为诊断CAN的金标准[1],它包括4个金标准测试:对深呼吸、站立和Valsalva动作的心率反应和站立时的血压反应。存在一个异常的心血管检测结果为可能的或早期的CAN,存在两个异常的心血管结果诊断为CAN,OH的存在为严重或晚期的CAN。虽然传统的CAN诊断模式——CARTs有效,但对于大规模筛查较难,导致诊断不足和无法纳入筛查指南。基于机器学习算法的短心电图跟踪分析显示了诊断CAN的潜力,该方法可应用于CAN的大规模筛选(AUC=0.68,95%CI:0.54~0.81),特别是识别有心血管危险因素的CAN和严重的CAN(AUC=0.93,95%CI:0.91~0.94)[28]。

3.3.4 HRV和压力反射敏感性

临床研究中应用最广泛、最容易获得的诊断试验是时频域HRV和压力反射敏感性(baroreflex sensitivity,BRS),BRS在异常CARTs发展之前受损,可作为早期诊断[17]。COMPASS 31评分和HRV的结合可以提高T2DM中CAN的诊断性能,有助于CAN的诊断。当将COMPASS 31评分与R-R间期的标准差和低频功率结合时,AUC值增加至0.958,敏感度为90.7%,特异度为86.7%[29]。近期研究发现,标准的10 s 12导联心电图记录的HRV指标展示出了与CARTs定义的CAN的一致性,提示其可作为检测CAN的方式[30]

3.3.5 角膜共聚焦显微镜

角膜共聚焦显微镜(corneal confocal microscopy,CCM)可用作测量角膜小纤维神经,角膜神经纤维损伤指标通过神经纤维密度、神经分支密度和神经纤维长度来评估。多项研究提示,角膜神经损伤可有效诊断亚临床和明显的糖尿病自主神经病变,具有高敏感性和特异性[31-32]。随着人工智能的开发和应用,基于人工智能深度学习算法的CCM图像对于检测糖尿病周围神经病变显示出极好的准确性[33],CAN的应用有待进一步研究。

3.3.6 其他

心肌闪烁显像可以评估心脏交感神经支配,这在识别交感神经支配异常方面比HRV分析显示出更高的敏感性[34]。然而,因其专业性较强和价格昂贵,这些模式主要用于研究中。此外,有研究提示视网膜内层厚度和心血管自主神经功能障碍之间的显著关联[35],人工智能联合视网膜图像可进行区分早期(AUC=0.87,95%CI:0.74~0.97)和诊断或明确严重的CAN(AUC=0.94,95%CI:0.86~1.00)[36]。

04 CAN的预防和治疗

CAN仍然缺乏有效的病因学治疗,目前管理的目标在于控制危险因素,改善症状及延缓疾病进展,具体包括生活方式干预、药物治疗和手术干预。

4.1 生活方式干预

近期一项关于T2DM患者运动干预的系统综述,纳入8项随机对照试验,发现不同运动类型,包括有氧运动结合阻力训练、高强度间歇训练和渐进式阻力训练,对T2DM患者的心脏自主功能均可带来有益的影响[37]。另一项纳入21项研究的系统综述和荟萃分析提示,不同运动类型中,耐力训练的证据水平最高,监督训练似乎很有益[38]。饮食方面,低热量饮食可改善HRV,在伴有T2DM的26例肥胖患者中,在8周内通过两种不同的热量限制饮食均减轻了体重并改善了心脏自主神经功能[39]2024年美国糖尿病协会(ADA)共识[24]建议尽早优化血糖控制,以防止或延迟T1DM患者的神经病变发展,并延缓T2DM患者的神经病变发展。糖尿病控制与并发症试验(Diabetes Control and Complications Trial,DCCT)/糖尿病控制与并发症的流行病学(Epidemiology of Diabetes Interventions and Complications,EDIC)研究在DCCT研究的基础上继续随访至13/14年,提示既往强化血糖治疗显著降低T1DM患者CAN的风险(强化治疗组比常规治疗组患病率:28.9%比35.2%,P=0.018)[6]。在T2DM中建议在减少危险因素的基础上优化血糖管理,干预多重危险因素减少T2DM患者心血管疾病研究(Steno-2研究)显示,随访7.8年强化危险因素治疗组T2DM患者CAN的相对风险降低了约60%[6]。而ACCORD研究提示,强化血糖治疗可使既往无心血管疾病史的T2DM患者CAN的风险降低16%(OR=0.84,95%CI:0.75~0.94,P=0.003),但在有心血管疾病史的患者中无明显降低(OR=1.10,95%CI:0.91~1.34,P=0.34)[40]。

4.2.2 对心脏自主神经系统有影响的药物

二甲双胍有助于改善肥胖型T2DM患者的心脏交感迷走神经平衡。考虑二甲双胍可以作用于脂肪组织,减少游离脂肪酸的释放,并改善胰岛素抵抗,从而降低交感神经过度活动。此外,二甲双胍可能有直接的中枢神经系统作用靶点(图1)[41]。一项随机对照试验纳入412例T2DM患者,提示与单独使用胰岛素相比,二甲双胍联合胰岛素治疗18个月增加了下降的直立性血压(orthostatic blood pressure)(P[42]。近期有研究提示,二甲双胍可阻止维生素B12的吸收从而增加自主神经病变的发生,因此建议所有使用二甲双胍的患者定期监测维生素B12 [43]。

注:+表示促进,-表示抑制,虚线表示有限的证据支持;GLP1-RA,胰高血糖素样肽-1 受体激动剂;SGLT2i,钠-葡萄糖共转运蛋白 2 抑制剂

图1 不同治疗方式对糖尿病自主神经功能的影响

钠-葡萄糖共转运蛋白2抑制剂(sodium-glucose cotransporter 2 inhibitor,SGLT2i)可减少T2DM心力衰竭和心律失常性心原性猝死的风险[44-45],对CAN的影响需要更多研究证实。一项前瞻性多中心研究纳入324例T2DM患者并随访1年,结果提示SGLT2i可减少T2DM患者的心脏自主神经功能障碍和血管-迷走神经性晕厥复发[46]。考虑机制:交感神经支配肾脏的近端小管,调节SGLT2转运体的表达,因此SGLT2i对交感神经活动的影响可能是继发于通过抑制肾传入交感神经激活来减少肾应激[41]。但一项纳入4项随机对照研究的荟萃分析[47]和卡格列净与糖尿病肾病患者肾脏事件的临床评价(Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation,CREDENCE)试验的事后分析[48]均提示SGLT2i不会影响CAN的发生风险。多项研究提示,胰高血糖素样肽-1受体激动剂(glucagon-like peptide-1 receptor agonist,GLP-1RA)可改善HRV[49]。在一项纳入16项研究的荟萃分析中,仅2项研究显示GLP-1RA可改善站立试验30∶15比值,其他CARTs结果没有观察到统计学差异[50]。此外,GLP-1RA可使心率升高[49]。但GLP-1RA在降低心血管死亡率方面具有有益作用,需要进一步研究GLP-1RA在特异性预防或逆转CAN方面的潜在益处。血管紧张素转化酶抑制剂(angiotensin converting enzyme inhibitor,ACEI)和血管紧张素Ⅱ受体阻滞剂(angiotensin Ⅱ receptor blocker,ARB)可能在预防CAN方面发挥有益作用。在4项研究中,ARB和ACEI均改善了CAN,其可能在糖尿病患者自主神经病变的预后和心血管事件的减少中发挥重要作用。喹那普利增加了副交感神经张力,改善了自主神经系统的交感神经/迷走神经平衡。此外,ACEI减少了糖尿病中AGE的积累,可能是改善CAN的机制之一[51]。β受体阻滞剂可通过降低静息心率,并可能通过调节迷走神经张力,从而改善HRV[6]。α-硫辛酸具有改善葡萄糖稳态和调节血脂、抗炎、减少氧化应激,增加一氧化氮产生和Na++-ATP酶活性,减少蛋白质糖基化的作用[52]。这些通路大多数涉及糖尿病神经病变的发病机制。近期有研究发现,低维生素D水平与T1DM和T2DM患者的CAN相关,补充维生素D可延缓CAN的进展[53]OH的治疗目标是尽量减少体位性症状,而不是恢复血压正常。大多数患者需要非药物措施和药物治疗,美国食品和药物管理局推荐的治疗药物为米多君和屈昔多巴[24]。此外,氟氢可的松可增加血压,扩大血浆容量,从而减轻OH。吡啶斯的明增加了压力反射介导的全身阻力,通过改善BRS改善OH,而不引起仰卧位高血压[17]。

4.3 手术治疗

关于减重手术对糖尿病自主神经功能障碍的影响的证据是有限的。在17例严重肥胖伴T2DM的患者中,代谢手术可实现减肥,并改善HRV指标[54]。但近期一项关于79例Ⅱ/Ⅲ度肥胖(体质指数>35 kg/m2)合并糖尿病患者进行减重手术的前瞻性研究提示,随访2年后,进行减重手术患者的CAN病变处于稳定状态(P=0.89)[55],考虑与随访时间较短有关,未来需要开展随访时间更长的队列研究来证实代谢手术是否可以改善CAN。

05

小结

CAN在糖尿病中的患病率不断增加,在糖尿病前期和代谢综合征患者中也可出现,其发病机制较复杂。CAN可增加心血管疾病、慢性肾脏病和脑卒中等不良事件的风险,因此早期诊断至关重要,人工智能的应用为大规模筛查提供了手段。而生活方式和药物治疗在CAN自然病史的早期至关重要,未来需要通过更多研究来证实最佳的治疗方案以及探索新的针对发病机制的药物。

参考文献

[1] Spallone V, Ziegler D, Freeman R, et al; Toronto Consensus Panel on Diabetic Neuropathy. Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management[J]. Diabetes Metab Res Rev, 2011, 27(7): 639-653. DOI: 10.1002/dmrr.1239.

[2] Kaze AD, Fonarow GC, Echouffo-Tcheugui JB. Cardiac Autonomic Dysfunction and Risk of Silent Myocardial Infarction Among Adults With Type 2 Diabetes[J]. J Am Heart Assoc, 2023, 12(20): e029814. DOI: 10.1161/JAHA.123.029814.

[3] Kaze AD, Yuyun MF, Erqou S, et al. Cardiac autonomic neuropathy and risk of incident heart failure among adults with type 2 diabetes[J]. Eur J Heart Fail, 2022, 24(4): 634-641. DOI: 10.1002/ejhf.2432.

[4] Tang Y, Ang L, Jaiswal M, et al. Cardiovascular Autonomic Neuropathy and Risk of Kidney Function Decline in Type 1 and Type 2 Diabetes: Findings From the PERL and ACCORD Cohorts[J]. Diabetes, 2024, 73(5): 751-762. DOI: 10.2337/db23-0247.

[5] Kaze AD, Yuyun MF, Fonarow GC, et al. Cardiac autonomic dysfunction and risk of incident stroke among adults with type 2 diabetes[J]. Eur Stroke J, 2023, 8(1): 275-282. DOI: 10.1177/23969873221127108.

[6] Eleftheriadou A, Spallone V, Tahrani AA, et al. Cardiovascular autonomic neuropathy in diabetes: an update with a focus on management[J]. Diabetologia, 2024, 67(12): 2611-2625. DOI: 10.1007/s00125-024-06242-0.

[7] Pan Q, Li Q, Deng W, et al. Prevalence and Diagnosis of Diabetic Cardiovascular Autonomic Neuropathy in Beijing, China: A Retrospective Multicenter Clinical Study[J]. Front Neurosci, 2019, 13: 1144. DOI: 10.3389/fnins.2019.01144.

[8] Eleftheriadou A, Williams S, Nevitt S, et al. The prevalence of cardiac autonomic neuropathy in prediabetes: a systematic review[J]. Diabetologia, 2021, 64(2): 288-303. DOI: 10.1007/s00125-020-05316-z.

[9] Williams SM, Eleftheriadou A, Alam U, et al. Cardiac Autonomic Neuropathy in Obesity, the Metabolic Syndrome and Prediabetes: A Narrative Review[J]. Diabetes Ther, 2019, 10(6): 1995-2021. DOI: 10.1007/s13300-019-00693-0.

[10] Hansen CS, Rasmussen DGK, Hansen TW, et al. Collagen turnover is associated with cardiovascular autonomic and peripheral neuropathy in type 1 diabetes: novel pathophysiological mechanism? [J]. Cardiovasc Diabetol, 2023, 22(1): 158. DOI: 10.1186/s12933-023-01891-8.

[11] Serhiyenko VA, Serhiyenko AA. Cardiac autonomic neuropathy: Risk factors, diagnosis and treatment[J]. World J Diabetes, 2018, 9(1): 1-24. DOI: 10.4239/wjd.v9.i1.1.

[12] Guo Q, Zang P, Xu S, et al. Time in Range, as a Novel Metric of Glycemic Control, Is Reversely Associated with Presence of Diabetic Cardiovascular Autonomic Neuropathy Independent of HbA1c in Chinese Type 2 Diabetes[J]. J Diabetes Res, 2020: 5817074. DOI: 10.1155/2020/5817074.

[13] Racca C, Bouman EJ, Van Beers CAJ, et al. Association between hypoglycaemic glucose variability and autonomic function in type1 diabetes with impaired hypoglycaemia awareness[J]. Diabetes Res Clin Pract, 2022, 189: 109964. DOI: 10.1016/j.diabres.2022.109964.

[14] Zhang X, Yang X, Sun B, et al. Perspectives of glycemic variability in diabetic neuropathy: a comprehensive review[J]. Commun Biol, 2021, 4(1): 1366. DOI: 10.1038/s42003-021-02896-3.

[15] Gad H, Elgassim E, Mohammed I, et al. Cardiovascular autonomic neuropathy is associated with increased glycemic variability driven by hyperglycemia rather than hypoglycemia in patients with diabetes[J]. Diabetes Res Clin Pract, 2023, 200: 110670. DOI: 10.1016/j.diabres.2023.110670.

[16] Kim MY, Kim G, Park JY, et al. The Association Between Continuous Glucose Monitoring-Derived Metrics and Cardiovascular Autonomic Neuropathy in Outpatients with Type 2 Diabetes[J]. Diabetes Technol Ther, 2021, 23(6): 434-442. DOI: 10.1089/dia.2020.0599.

[17] Williams S, Raheim SA, Khan MI, et al. Cardiac Autonomic Neuropathy in Type 1 and 2 Diabetes: Epidemiology, Pathophysiology, and Management[J]. Clin Ther, 2022, 44(10): 1394-1416. DOI: 10.1016/j.clinthera.2022.09.002.

[18] Tordai DZ, Hajdu N, Racz R, et al. Genetic Factors Associated with the Development of Neuropathy in Type 2 Diabetes[J]. Int J Mol Sci, 2024, 25(3): 1815. DOI: 10.3390/ ijms25031815.

[19] Cardoso CRL, de Oliveira VAG, Leite NC, et al. Prognostic importance of cardiovascular autonomic neuropathy on cardiovascular and mortality outcomes in individuals with type 2 diabetes: The Rio de Janeiro type 2 diabetes cohort[J]. Diabetes Res Clin Pract, 2023, 196: 110232. DOI: 10.1016/j.diabres.2022.110232.

[20] Kaze AD, Yuyun MF, Ahima RS, et al. Autonomic dysfunction and risk of severe hypoglycemia among individuals with type 2 diabetes[J]. JCI Insight, 2022, 7(22): e156334. DOI: 10.1172/jci.insight.156334.

[21] Kaze AD, Yuyun MF, Erqou S, et al. Severe Hypoglycemia and Incidence of QT Interval Prolongation Among Adults With Type 2 Diabetes[J]. J Clin Endocrinol Metab, 2022, 107(7): e2743-e2750. DOI: 10.1210/clinem/dgac195.

[22] Vinik AI, Camacho PM, Davidson JA, et al. American Association of Clinical Endocrinologists and American College ofEndocrinology Position Statement on Testing for Autonomic and Somatic Nerve Dysfunction[J]. Endocr Pract, 2017, 23(12): 1472-1478. DOI: 10.4158/EP-2017-0053.

[23] Pop-Busui R, Boulton AJ, Feldman EL, et al. Diabetic Neuropathy: A Position Statement by the American Diabetes Association[J]. Diabetes Care, 2017, 40(1): 136-154. DOI: 10.2337/dc16-2042.

[24] American Diabetes Association Professional Practice C. Retinopathy, Neuropathy, and Foot Care: Standards of Care in Diabetes-2024[J]. Diabetes Care, 2024, 47(Suppl 1): S231-S243. DOI: 10.2337/dc24-S012.

[25]中华医学会糖尿病学分会神经并发症学组, 国家基本公共卫生服务项目基层糖尿病防治管理办公室. 国家基层糖尿病神经病变诊治指南(2024版)[J]. 中华糖尿病杂志, 2024, 16(5): 496-511. DOI: 10. 3760/cma.j.cn115791-20240408-00160.

[26]中华医学会糖尿病学分会神经并发症学组. 糖尿病神经病变诊治专家共识(2021年版)[J]. 中华糖尿病杂志, 2021, 13(6): 540-557. DOI: 10. 3760/cma.j.cn115791-20210310-00143.

[27] D′Ippolito I, Menduni M, D′Amato C, et al. Does the Relationship of the Autonomic Symptoms Questionnaire COMPASS 31 with Cardiovascular Autonomic Tests Differ between Type 1 and Type 2 Diabetes Mellitus? [J]. Diabetes Metab J, 2024, 48(6): 1114-1125. DOI: 10.4093/dmj.2023.0301.

[28] Irlik K, Aldosari H, Hendel M, et al. Artificial intelligence-enhanced electrocardiogram analysis for identifying cardiac autonomic neuropathy in patients with diabetes[J]. Diabetes Obes Metab, 2024, 26(7): 2624-2633. DOI: 10. 1111/dom.15578.

[29] Zhang Z, Ma Y, Fu L, et al. Combination of Composite Autonomic Symptom Score 31 and Heart Rate Variability for Diagnosis of Cardiovascular Autonomic Neuropathy in People with Type 2 Diabetes[J]. J Diabetes Res, 2020: 5316769. DOI: 10.1155/2020/5316769.

[30] Pop-Busui R, Backlund JYC, Bebu I, et al. Utility of using electrocardiogram measures of heart rate variability as a measure of cardiovascular autonomic neuropathy in type 1 diabetes patients[J]. J Diabetes Investig, 2021, 13(1): 125-133. DOI: 10.1111/jdi.13635.

[31]王茗, 王亚昕, 赵蔚菁, 等. 角膜神经改变与糖尿病慢性并发症的研究进展[J]. 中华糖尿病杂志, 2023, 15(2): 191-194. DOI: 10.3760/cma.j.cn115791-20220610-00268.

[32]贾晓凡, 鲜彤章, 张丽娜, 等. 角膜神经纤维形态改变与糖尿病心脏自主神经病变的关系[J]. 中华糖尿病杂志, 2019, 11(7): 472-476. DOI: 10.3760/cma.j.issn.1674-5809.2019.07.006.

[33] Preston FG, Meng Y, Burgess J, et al. Artificial intelligence utilising corneal confocal microscopy for the diagnosis of peripheral neuropathy in diabetes mellitus and prediabetes[J]. Diabetologia, 2022, 65(3): 457-466. DOI: 10.1007/s00125-021-05617-x.

[34] Didangelos T, Moralidis E, Karlafti E, et al. A Comparative Assessment of Cardiovascular Autonomic Reflex Testing and Cardiac 123I-Metaiodobenzylguanidine Imaging in Patients with Type 1 Diabetes Mellitus without Complications or Cardiovascular Risk Factors[J]. Int J Endocrinol, 2018: 5607208. DOI: 10.1155/2018/5607208.

[35] Choi JA, Kim HW, Kwon JW, et al. Early inner retinal thinning and cardiovascular autonomic dysfunction in type 2 diabetes[J]. PLoS One, 2017, 12(3): e0174377. DOI: 10.1371/journal.pone.0174377.

[36] Nabrdalik K, Irlik K, Meng Y, et al. Artificial intelligence-based classification of cardiac autonomic neuropathy from retinal fundus images in patients with diabetes: The Silesia Diabetes Heart Study[J]. Cardiovasc Diabetol, 2024, 23(1): 296. DOI: 10.1186/s12933-024-02367-z.

[37] Hamasaki H. The Effect of Exercise on Cardiovascular Autonomic Nervous Function in Patients with Diabetes: A Systematic Review[J]. Healthcare, 2023, 11(19): 2668. DOI: 10.3390/healthcare11192668.

[38] Picard M, Tauveron I, Magdasy S, et al. Effect of exercise training on heart rate variability in type 2 diabetes mellitus patients: A systematic review and meta-analysis[J]. PLoS One, 2021, 16(5): e0251863. DOI: 10. 1371/journal.pone.0251863.

[39] Ziegler D, Strom A, Nowotny B, et al. Effect of Low-Energy Diets Differing in Fiber, Red Meat, and Coffee Intake on Cardiac Autonomic Function in Obese Individuals With Type 2 Diabetes[J]. Diabetes Care, 2015, 38(9): 1750-1757. DOI: 10.2337/dc15-0466.

[40] Tang Y, Shah H, Bueno Junior CR, et al. Intensive Risk Factor Management and Cardiovascular Autonomic Neuropathy in Type 2 Diabetes: The ACCORD Trial[J]. Diabetes Care, 2021, 44(1): 164-173. DOI: 10.2337/dc20-1842.

[41] Spallone V, Valensi P. SGLT2 inhibitors and the autonomic nervous system in diabetes: A promising challenge to better understand multiple target improvement[J]. Diabetes Metab, 2021, 47(4): 101224. DOI: 10.1016/j.diabet.2021.101224.

[42] Hansen CS, Lundby-Christiansen L, Tarnow L, et al. Metformin may adversely affect orthostatic blood pressure recovery in patients with type 2 diabetes: substudy from the placebo-controlled Copenhagen Insulin and Metformin Therapy (CIMT) trial[J]. Cardiovasc Diabetol, 2020, 19(1): 150. DOI: 10.1186/s12933-020-01131-3.

[43] Bell DSH. Metformin-induced vitamin B12 deficiency can cause or worsen distal symmetrical, autonomic and cardiac neuropathy in the patient with diabetes[J]. Diabetes Obes Metab, 2022, 24(8): 1423-1428. DOI: 10.1111/dom.14734.

[44] McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction[J]. N Engl J Med, 2019, 381(21): 1995-2008. DOI: 10.1056/NEJMoa1911303.

[45] Fernandes GC, Fernandes A, Cardoso R, et al. Association of SGLT2 inhibitors with arrhythmias and sudden cardiac death in patients with type 2 diabetes or heart failure: A meta-analysis of 34 randomized controlled trials[J]. Heart Rhythm, 2021, 18(7): 1098-1105. DOI: 10.1016/j.hrthm.2021.03.028.

[46] Sardu C, Massimo Massetti M, Rambaldi P, et al. SGLT2-inhibitors reduce the cardiac autonomic neuropathy dysfunction and vaso-vagal syncope recurrence in patients with type 2 diabetes mellitus: the SCAN study[J]. Metabolism, 2022, 137: 155243. DOI: 10.1016/j.metabol.2022.155243.

[47] Patoulias D, Katsimardou A, Fragakis N, et al. Effect of SGLT-2 inhibitors on cardiac autonomic function in type 2 diabetes mellitus: a meta-analysis of randomized controlled trials[J]. Acta Diabetol, 2023, 60(1): 1-8. DOI: 10.1007/s00592-022-01958-0.

[48] Liao J, Kang A, Xia C, et al. The impact of canagliflozin on the risk of neuropathy events: A post-hoc exploratory analysis of the CREDENCE trial[J]. Diabetes Metab, 2022, 48(4): 101331. DOI: 10.1016/j.diabet.2022.101331.

[49] Spallone V. Update on the Impact, Diagnosis and Management of Cardiovascular Autonomic Neuropathy in Diabetes: What Is Defined, What Is New, and What Is Unmet[J]. Diabetes Metab J, 2019, 43(1): 3-30. DOI: 10.4093/dmj.2018.0259.

[50] Greco C, Santi D, Brigante G, et al. Effect of the Glucagon-Like Peptide-1 Receptor Agonists on Autonomic Function in Subjects with Diabetes: A Systematic Review and Meta-Analysis[J]. Diabetes Metab J, 2022, 46(6): 901-911. DOI: 10.4093/dmj.2021.0314.

[51] Didangelos T, Veves A. Treatment of Diabetic Cardiovascular Autonomic, Peripheral and Painful Neuropathy. Focus on the Treatment of Cardiovascular Autonomic Neuropathy with ACE Inhibitors[J]. Curr Vasc Pharmacol, 2020, 18(2): 158-171. DOI: 10.2174/1570161117666190521101342.

[52] Akbari M, Ostadmohammadi V, Lankarani KB, et al. The effects of alpha-lipoic acid supplementation on glucose control and lipid profiles among patients with metabolic diseases: A systematic review and meta-analysis of randomized controlled trials[J]. Metabolism, 2018, 87: 56-69. DOI: 10.1016/j.metabol.2018.07.002.

[53] Putz Z, Tordai D, Hajdu N, et al. Vitamin D in the Prevention and Treatment of Diabetic Neuropathy[J]. Clin Ther, 2022, 44(5): 813-823. DOI: 10.1016/j.clinthera.2022.03.012.

[54] Casellini CM, Parson HK, Hodges K, et al. Bariatric Surgery Restores Cardiac and Sudomotor Autonomic C-Fiber Dysfunction towards Normal in Obese Subjects with Type 2 Diabetes[J]. PLoS One, 2016, 11(5): e0154211. DOI: 10.1371/journal.pone.0154211.

[55] Reynolds EL, Watanabe M, Banerjee M, et al. The effect of surgical weight loss on diabetes complications in individuals with class II/III obesity[J]. Diabetologia, 2023, 66(7): 1192-1207. DOI: 10.1007/s00125-023-05899-3.

来源:中国心血管杂志

相关推荐