两位数学家发现素数计数新方法,「p²+nq²」形式的素数有无限多个
随着时间的推移,数学家们把这些标准变得越来越严格。通过证明仍然有无限多的素数满足这种越来越严格的限制,他们逐渐深入地了解素数的存在环境。但问题是,这类定理很难证明。
随着时间的推移,数学家们把这些标准变得越来越严格。通过证明仍然有无限多的素数满足这种越来越严格的限制,他们逐渐深入地了解素数的存在环境。但问题是,这类定理很难证明。
素数,即「只能被它们自己和 1 整除的数」,可以说是数学中最基本的组成部分。素数的神秘之处在于:乍一看,它们似乎随意散布在数轴上,但实际上并不是随机的,而是完全确定的。仔细观察它们,就会发现各种奇怪的模式。数学家们花了几个世纪的时间试图解开这些模式。如果能更好
关键是证明中用到了与Gowers范数相关的技术,而Gowers范数一开始是拿来研究等差数列的,看上去和素数规律风马牛不相及。