NoETL 自动化指标平台如何保障数据质量和口径一致性?
随着敏捷商业智能(BI)、用户行为分析、A/B测试等现代数据分析工具的发展,越来越多的业务用户能够自助式地利用数据分析,进行业务决策和判断,这一趋势极大地挖掘并释放了数据的潜在价值。然而,这种数据使用的分散化趋势也带来了新的问题,即数据口径和定义的不一致性,
随着敏捷商业智能(BI)、用户行为分析、A/B测试等现代数据分析工具的发展,越来越多的业务用户能够自助式地利用数据分析,进行业务决策和判断,这一趋势极大地挖掘并释放了数据的潜在价值。然而,这种数据使用的分散化趋势也带来了新的问题,即数据口径和定义的不一致性,
一个事实,就是 BI 工具在数据分析与展示层面具有强大能力,这一点不容置疑。但随着企业内报表数量越来越多,业务人员在深度使用过程中,却发现 BI 工具还是存在诸多问题。
目前市面上的指标平台已有很多,涵盖了多种类型,像传统的指标管理平台、敏捷 BI 工具,以及 NoETL 自动化指标平台等,在指标管理和数据分析支持能力上优劣势还是很明显的。