梯度下降路径规划算法及实现

360影视 日韩动漫 2025-04-05 11:27 2

摘要:基于梯度下降的路径规划通过迭代优化路径点,使总代价(路径长度、障碍物距离、平滑度)最小化。步骤如下:

以下为基于梯度下降的路径规划算法的实现步骤及代码示例:

1. 算法概述

基于梯度下降的路径规划通过迭代优化路径点,使总代价(路径长度、障碍物距离、平滑度)最小化。步骤如下:

初始化路径:起点到终点的直线路径。定义代价函数:包含长度项、障碍物项、平滑项。计算梯度:各代价项对路径点的梯度。迭代更新路径:沿负梯度方向更新路径点,直至收敛。

2. 代码实现(Python仿真)

python

import numpy as np

import matplotlib.pyplot as plt

class GradientDescentPathPlanner:

def __init__(self, start, goal, num_points, obstacles, weights=(1.0, 1.0, 1.0)):

self.start = np.array(start)

self.goal = np.array(goal)

self.num_points = num_points

self.obstacles = [np.array(obs) for obs in obstacles]

self.weights = weights # [w_length, w_obs, w_smooth]

self.path = self.initialize_path

def initialize_path(self):

# 在起点和终点之间生成均匀路径点(包括端点)

return np.linspace(self.start, self.goal, self.num_points)

def cost_function(self, path):

# 计算总代价

cost_length = self.calc_length_cost(path)

cost_obstacle = self.calc_obstacle_cost(path)

cost_smooth = self.calc_smooth_cost(path)

total_cost = self.weights[0]*cost_length + self.weights[1]*cost_obstacle + self.weights[2]*cost_smooth

return total_cost, (cost_length, cost_obstacle, cost_smooth)

def calc_length_cost(self, path):

# 路径总长度

return sum(np.linalg.norm(path[i+1]-path[i]) for i in range(len(path)-1))

def calc_obstacle_cost(self, path):

# 障碍物惩罚项(指数型)

cost = 0.0

for point in path:

min_dist = min(np.linalg.norm(point - obs) for obs in self.obstacles)

cost += np.exp(-min_dist) # 距离越近,惩罚越大

return cost

def calc_smooth_cost(self, path):

# 平滑项(二阶差分平方和)

cost = 0.0

for i in range(1, len(path)-1):

diff = path[i-1] - 2*path[i] + path[i+1]

cost += np.linalg.norm(diff)**2

return cost

def compute_gradients(self, path):

# 计算各代价项的梯度

grad_length = self.compute_length_gradient(path)

grad_obstacle = self.compute_obstacle_gradient(path)

grad_smooth = self.compute_smooth_gradient(path)

# 加权求和

total_grad = (

self.weights[0] * grad_length +

self.weights[1] * grad_obstacle +

self.weights[2] * grad_smooth

)

return total_grad

def compute_length_gradient(self, path):

# 路径长度梯度

grad = np.zeros_like(path)

for i in range(len(path)):

if i == 0:

# 起点只影响第一段

grad[i] = (path[i] - path[i+1]) / (np.linalg.norm(path[i]-path[i+1]) + 1e-8)

elif i == len(path)-1:

# 终点只影响最后一段

grad[i] = (path[i] - path[i-1]) / (np.linalg.norm(path[i]-path[i-1]) + 1e-8)

else:

# 中间点影响前后两段

grad[i] = (

(path[i] - path[i+1]) / (np.linalg.norm(path[i]-path[i+1]) + 1e-8) +

(path[i] - path[i-1]) / (np.linalg.norm(path[i]-path[i-1]) + 1e-8)

)

return grad

def compute_obstacle_gradient(self, path):

# 障碍物项梯度

grad = np.zeros_like(path)

for i in range(len(path)):

point = path[i]

min_dist = np.inf

closest_obs = None

for obs in self.obstacles:

dist = np.linalg.norm(point - obs)

if dist

min_dist = dist

closest_obs = obs

if closest_obs is not None:

direction = (point - closest_obs) / (min_dist + 1e-8)

grad[i] = -np.exp(-min_dist) * direction

return grad

def compute_smooth_gradient(self, path):

# 平滑项梯度

grad = np.zeros_like(path)

n = len(path)

for j in range(1, n-1):

term = path[j-1] - 2*path[j] + path[j+1]

grad[j-1] += 2 * term

grad[j] += -4 * term

grad[j+1] += 2 * term

return grad

def optimize(self, max_iter=100, lr=0.01, tol=1e-5):

costs =

for it in range(max_iter):

grad = self.compute_gradients(self.path)

# 更新中间点(保持起点和终点固定)

self.path[1:-1] -= lr * grad[1:-1]

# 计算当前代价

total_cost, _ = self.cost_function(self.path)

costs.append(total_cost)

if np.linalg.norm(grad[1:-1])

print(f"Converged at iteration {it}")

break

return self.path, costs

# 仿真示例

if __name__ == "__main__":

start = (0, 0)

goal = (10, 10)

obstacles = [(5, 5), (3, 7), (7, 3)]

num_points = 20

planner = GradientDescentPathPlanner(start, goal, num_points, obstacles, weights=(1, 100, 10))

# 初始路径

initial_path = planner.path.copy

# 优化路径

optimized_path, costs = planner.optimize(max_iter=500, lr=0.05)

# 可视化

plt.figure

plt.scatter(*zip(*obstacles), c='red', label='Obstacles')

plt.plot(*initial_path.T, 'g--', label='Initial Path')

plt.plot(*optimized_path.T, 'b-', label='Optimized Path')

plt.scatter(*start, c='green', marker='s', label='Start')

plt.scatter(*goal, c='red', marker='s', label='Goal')

plt.legend

plt.xlabel('X')

plt.ylabel('Y')

plt.title('Gradient Descent Path Planning')

plt.show

# 绘制代价曲线

plt.figure

plt.plot(costs)

plt.xlabel('Iteration')

plt.ylabel('Total Cost')

plt.title('Cost Convergence')

plt.show

3. 关键步骤说明

初始化路径:起点到终点的直线插值。代价函数:由路径长度、障碍物距离和平滑度组成,权重可调。梯度计算

Ø 长度项:每个路径点的梯度指向相邻点。

Ø 障碍物项:路径点向远离最近障碍物方向调整。

Ø 平滑项:二阶差分惩罚项,减少路径曲率。

迭代优化:沿梯度反方向更新路径点,固定起点和终点。

4. ROS C++实现要点

订阅Costmap:获取障碍物信息。路径表示:使用nav_msgs::Path消息。实时更新:结合定时器或传感器回调进行迭代优化。可视化:通过RViz实时显示优化过程。

通过调整权重参数和学习率,可平衡路径长度、安全性与平滑度,适应不同场景需求。

来源:老客数据一点号

相关推荐