石墨烯-PEDOT:PSS填料实现具有类似皮肤特性的自维护电子材料

360影视 动漫周边 2025-04-28 17:08 3

摘要:传统设备缺乏自然设计中固有的适应性和响应性。因此,它们无法在自然环境中自主维护自身。造成这种限制的主要原因是,它们的构造使用了刚性和易碎的材料组件,这阻碍了它们在不断变化的环境中适应和进化的能力。此外,它们在受伤或严重损坏后往往无法自我修复。即使是具有自愈、柔

1成果简介

传统设备缺乏自然设计中固有的适应性和响应性。因此,它们无法在自然环境中自主维护自身。造成这种限制的主要原因是,它们的构造使用了刚性和易碎的材料组件,这阻碍了它们在不断变化的环境中适应和进化的能力。此外,它们在受伤或严重损坏后往往无法自我修复。即使是具有自愈、柔软和响应特性的设备,也往往无法将所有这些特性无缝集成到一个单一、可扩展和有凝聚力的平台中。本文,丹麦技术大学Firoz Babu Kadumudi、Alireza Dolatshahi-Pirouz等研究人员在《ADVANCED SCIENCE》期刊发表名为“Self-Maintainable Electronic Materials with Skin-Like Characteristics Enabled by Graphene-PEDOT:PSS Fillers”的论文,研究利用石墨烯-聚(3,4-亚乙二氧基噻吩):聚苯乙烯磺酸盐(石墨烯-PEDOT:PSS)填料将一种典型的软弱、绝缘和果冻状材料转变为一种具有类似于皮肤组织等生物体特性的软电子材料,这是一项重大突破。开发出的电子材料还具有一系列其他功能,包括热调节、三维打印性和多重传感等方法,这些功能都归功于填充物增强所产生的分层组织。这一类新材料的引入可促进栩栩如生的软机器人和生物电子学的自我维护,它们可无缝集成到人体等动态环境中,同时展现出感知、响应和适应挑战性环境的能力。

2图文导读

图1、Concepts and properties of the materials. a) Conceptual illustration of the various applications of the material. b) Schematic of the fabrication process and the underlying chemistry. c) Fourier transform infrared (FTIR) spectra of synthesized materials. d) DSC profiles assessing the intrinsic polymeric structure of the materials (n = 3). e) Photographs of the as-prepared samples. f) Quantification of water content in the samples as a function of filler concentration (n = 8). g) Efficient reassembly of the components after being torn apart. SEM images presenting a detailed examination of the rapid self-healing property inherent in P40 (n = 3). h) A cyclic demonstration of the spontaneous healing of the electronic circuit. The approximate recovery time for each cycle is 20 s (n = 4). i) Relationship between added fillers and conductivity (n = 5). j) Quantified adhesion strength on steel, brass, PET, polydimethylsiloxane (PDMS), skin, muscle, heart, and tendon, further emphasizing the versatility of P40 as an adhesive. k) Ability of P40 to heal broken muscle tissue both mechanically and electrically (n = 4). All data are presented as mean ± SD.

图2.Mechanical Characterization. a) Visual representation of the remarkable stretchability of P40, exhibiting its ability to extend up to 65 mm from a 6 mm gauge length, with almost complete recovery observed after stretching it to 42 mm. b) Tensile stress–strain curves of the various tested composites. c) Comprehensive mechanical property analysis, including tensile strength, Young's modulus, strain at break, and toughness (n = 4). d) Cyclic mechanical testing and dissipated energy evaluation for varying graphene oxide (GO) filler concentrations (0, P20, and P40) at different strain levels: 50% (black), 75% (red), 150% (blue), and 300% (grey) (n = 4). (e) Relationship between self-healing time, strain recovery, and Young's modulus with differentiated group markers, comparing the values observed for P40 with those reported in the literature for hydrogels with both adhesive and self-healing characteristics.[9, 24] All data are presented as mean ± SD.

图3.Physical sensing and heat regulation capacity. a) Establishment of a stable correlation between pressure and impedance, demonstrating a simultaneous decrease in resistance with the increased pressure. b) Characterization of the relationship between impedance and pressure (n = 4). c) Gauge factor calculations derived from strain measurements of up to 600% strain. The relationships between electrical impedance and d) pH value (n = 4) e), humidity (n = 5), and f) temperature (n = 5), exhibiting the adaptability and sensitivity of P40 to a broad range of physical parameters. g) Joule heating performance of P40, heated from room temperature to 65 °C by applying a DC voltage of 230 V (n = 3). h) Variations in the heating rate as a function of DC voltage (n = 3). i) Joule heating of 0, P0, and P40 at a resonance frequency of 1 MHz at low voltages (n = 3). j) Cyclic regulation of temperature, exhibiting rapid and reversible temperature changes from 65 to 30 °C (n = 3). k) Effective transformation of liquid metal Gallium into a liquid state within minutes using the observed Joule-heating property. All data are presented as mean ± SD

图4、Exploration, military, and medical robotic applications. a) Suspension printing of complex structures, including a pyramid, sphere, and square. b) Use of a support bath for 3D printing of sensors on a robot. c) 3D printing the sensors onto a complex snake structure using a laponite-based medium as support. A representative image showing that the P40-equipped snake can retransmit pressure data originating from hammer hitting. d,e) Visual presentation of the drug-releasing properties of P40 by evaluating its potential as a temperature-triggered system for the release of methylene blue. f) Assessment of the temperature-dependent release behavior of doxorubicin to probe the drug delivery potential of P40 (n = 4). g, h) Connecting the measured voltage changes (n = 3) with representative images of various scenarios showing the role of P40 as an artificial digital skin for an exploratory snake with pressure- and motion-sensing capabilities and obstacle-avoidance capacity via heating. All data are presented as mean ± SD.

图5、Advanced biosensing applications of P40. a) A highly scalable 3D extrusion printing method for integrating P40 into wearable electrochemical-based biosensors. The use of cyclic and DPV on P40 for sensing b) BSA, c) hydrogen peroxide (H2O2), d) L-dopa, and e) dopamine. All data are presented as mean, n = 4.

3小结

在这项研究中,我们提出了一种经济、绿色、可大规模生产的方法,用于生产下一代适应性强、用途广泛的软电子器件。研究结果表明,P40 的生产价格低于 140 美元/千克,最多可生产3000个传感器,生产时间不到一小时。这种可负担性使 P40 成为各种商业应用的一个有吸引力的选择,使其有别于 PEDOT:PSS(≈2 000 美元/千克)、聚苯胺(≈10 000 美元/千克)、聚(N-异丙基丙烯酰胺)(≈80 000 美元/千克)和聚吡咯(≈15 000 美元/千克)等更为昂贵和复杂的竞争对手。这种可扩展性可通过卷对卷加工、模塑和定制三维打印等高产能技术来实现,这些技术可支持快速、大规模生产,并将浪费降至最低。这种可扩展性与低成本的结合有助于将工业 4.0 发展到新的高度,实现电子产品的大规模生产,在人机接口、柔性电子、软机器人和生物有机体等领域有着广泛的应用。将这种材料引入这些领域的一个关键方面是它的高度定制性,这得益于它能够被轻松打印到复杂的三维架构上,以及类似于橡皮泥的可塑性。这种适应性将这种材料的可用性扩展到偏远地区,如南极洲、国际空间站、月球和火星。

现有的大多数软电子系统都容易发生撕裂、刺穿和其他形式的机械故障,这极大地阻碍了它们在太空、军事和自主野外机器人应用中的使用。P40 解决了软电子材料领域的这一关键限制。虽然刚性屏蔽和封装方法可以提高材料的耐用性,但它们会损害系统固有的柔软性和灵活性。然而,P40 引入了一种突破性的软物质系统,该系统即使在极端损坏的情况下也具有即时的自我修复能力。这种独特的能力不仅解决了现有电子材料的局限性,还为创造栩栩如生的电子设备提供了新的可能性。除了自我修复能力,P40 还具有一系列令人印象深刻的材料特性。它具有多重响应性和破纪录的热调节特性。这种独特的性能组合有可能推动太空文明的发展。这些材料可以自我维护,因为它们拥有与生物系统类似的感知能力、反应能力和适应能力。我们设想,未来月球和火星上的殖民地将使用这些类似生命、高度可扩展的电子材料,而不是传统的木材或金属。

文献
:https://doi.org/10.1002/advs.202410539

来源:材料分析与应用

来源:石墨烯联盟

相关推荐