基于石墨烯/MXene Pt/PtNPs多传感皮肤贴片,用于可穿戴汗液分析

360影视 欧美动漫 2025-05-13 17:22 1

摘要:用于监测汗液分析物的皮肤电化学传感器贴片提供了令人鼓舞的非侵入性生物标志物监测,但酶生物传感器也面临着一些挑战,包括灵敏度低和检测范围受限。本文,韩国光云大学Jae Yeong Park等研究人员在《Chemical Engineering Journal》期

1成果简介

用于监测汗液分析物的皮肤电化学传感器贴片提供了令人鼓舞的非侵入性生物标志物监测,但酶生物传感器也面临着一些挑战,包括灵敏度低和检测范围受限。本文,韩国光云大学Jae Yeong Park等研究人员在《Chemical Engineering Journal》期刊发表名为“MXene@Pt nanocomposite and nanoporous carbon reinforced 3D graphene-based electrochemical multi-sensing patch for wearable sweat analysis”的论文,研究新开发的电化学皮肤贴片基于锚定电沉积铂纳米颗粒(PtNPs)功能化激光诱导石墨烯(LIG)电极的 MXene@Pt 纳米复合材料(LIG/MXene@Pt/PtNPs),可用于葡萄糖、pH 值和 Na 值的监测,而基于杂化纳米多孔碳(HNPC)和普鲁士蓝(PB)的乳酸盐传感器则可用于超高乳酸盐的检测。利用简单、经济、激光雕刻和滴注技术,在一个贴片中制作了四个传感器。

所开发的葡萄糖传感器在生理汗液葡萄糖浓度范围(0-2 mM)内表现出卓越的灵敏度(86.45 μAmM+-1cm-2),而基于 HNPC 的乳酸盐传感器则表现出宽范围(0-100 mM)的检测能力。此外,基于聚苯胺的 pH 传感器和 Na ISE 在 pH 值为 4-9 和 56.26 mV/decade 的范围内分别显示出-50.99 mV/pH 和 56.26 mV/decade 的接近 Nernstian 的灵敏度。Ti+3C2Tx-MXene 的类金属导电性、PtNPs 和 PB 对 H2O2 的高电催化性能以及 HNPC 修饰电极电化学表面积的增强在实现高灵敏度葡萄糖传感器和超高检测乳酸盐传感器贴片中发挥了关键作用。最后,该电化学多传感贴片被成功用于监测室内固定自行车运动中人体志愿者的出汗情况。

2图文导读

图1. A) Schematic illustration of the proposed electrochemical multi-sensing patch. B) Functionalization of the glucose, lactate, Na ISE, and pH biosensor electrodes.

图2. FESEM images of A) MAX phase, B) multilayered Ti3C2Tx MXene, C) a few layer of Ti3C2Tx MXene, and D) Pt@Ti3C2Tx/LIG. E) Magnified view of Pt@Ti3C2Tx nanostructure. F) Magnified view of PtNPs/Pt@Ti3C2Tx nanostructure. G-H) Elemental mapping of PtNPs/Pt@Ti3C2Tx nanostructure. J-K) FESEM images of ZIF-8@ZIF-67 and HNPC. L) HRTEM image of HNPC showing Co nanoparticle and graphitization.

图3、 Physical characterization of the MXene@Pt nanocomposite. (A) XRD patterns of MXene@Pt nanocomposites modified LIG electrode. (B) XPS survey spectra of MXene@Pt nanocomposite. (C-F) High-resolution deconvoluted XPS peaks: Ti 2p, Pt 4f, C 1 s, O 1 s, and spectrum of MXene@Pt nanocomposite.

图4、 Electrochemical tests of the glucose and pH sensors. (A) Cyclic voltammetric test for the MXene, MXene@Pt, and MXene@Pt/PtNPs electrodes. (B) Amperometric responses of glucose sensors modified with various up to 2 mM of glucose at room temperature and pH 6.6. (C) MXene@Pt/PtNPs-based glucose sensor’s response. (D) The linear fitting plot of the glucose sensor. (E) Selectivity test of the glucose sensor using various interferences. (F) OCP responses of the pH sensor for buffer solutions with pH values from 3 to 9 in a staircase manner. (G) The linear fitting curve of the pH sensor. (H) Selectivity test of the pH sensor using various interferences. (I) pH sensors reproducibility (n = 3, n is the number of sensors) test using pH values 5, 7, and 9.

图5. (A-B) Amperometry response of the LIG and HNPC/LIG-based lactate sensor for a wide range of lactate detection, respectively. (C) Linearity fitting curve of the HNPC/LIG-based lactate biosensor. (D) Selectivity test for the lactate biosensor toward potential interferences. (E) Sensor’s response of the same batch of sensors (n = 4) with 20 mM lactate to examine the sensor-to-sensor repeatability. (F) The OCP versus time curves of the Na ISE toward 160 mM of Na. (G) Linearity curve of the Na ISE sensor. (H) Selectivity test of the Na ISE sensor using various interferences. (I) Relative responses (S/S++++0) are calculated by normalizing the OCP (S) to the initial OCP (S0) obtained with 30 iterations (the inset shows OCPs at the 5th, 10th, 15th, and 20th, tests) for a Na ISE.+

图6. Real-time on-body measurement of human sweat to measure glucose, lactate, Na+, and pH levels while correcting for pH variation. (A-D) Obtained chronoamperometric responses of glucose, lactate, pH, and Na ISE respectively 2 h after meal conditions. (E) The multimodal patch was mounted on the subject’s chest during exercise on a bike ergometer, with an enlarged image of the patch (inset). (F) Comparison of sweat glucose, lactate, Na, and pH levels before and after pH correction.

3小结

基于 MXene@Pt 纳米复合材料锚定电沉积铂纳米粒子的高性能葡萄糖、钾和 pH 传感器的开发标志着可穿戴和电化学生物传感技术向前迈出了重要一步。使用还原剂一锅合成 MXene@Pt 纳米复合材料为电沉积铂纳米粒子(PtNPs)在传导层上的锚定效应提供了有利的环境。在 MXene@Pt 纳米复合材料上集成 PtNPs 大大提高了传感器检测葡萄糖的灵敏度、稳定性和选择性。另一方面,基于PVC和DOS的扩散限制膜 (DLM)、MOF-on-MOF 衍生的杂化纳米多孔碳 (HNPC) 纳米粒子具有高电化学活性表面积和类似石墨的导电性,它们的结合使基于 LIG/HNPC/PB/LOx/DLM 的乳酸盐传感器实现了非常宽的检测范围。这些设备响应速度快、检测范围广,非常适合在诊断和个人健康跟踪等各种医疗和保健领域进行实时监测。未来的研究将侧重于优化传感器性能、集成 PCB 设计、蓝牙模块和用于实时分析监测的定制应用。此外,还将努力探索整合有效的微流体通道和动态校正算法,以精确连续地监测各种代谢物和新鲜汗液,进一步将 MXene@Pt 纳米复合材料打造成先进电化学传感解决方案的多功能材料。

文献:


来源:材料分析与应用

来源:石墨烯联盟

相关推荐