郑刚教授:从纤维帽增厚到斑块消退——降脂治疗诱导冠状动脉斑块有利变化的演变进程

360影视 欧美动漫 2025-09-13 21:10 1

摘要:在过去二十年间,一系列的冠状动脉影像学研究一致表明,降脂治疗(LLT)可使斑块表型发生有利变化。本文对相关研究进行回顾,旨在探讨斑块表型变化的时间进程。斑块对LLT的反应似乎始于纤维帽增厚,随后是脂质成分减少,最终是斑块体积回缩。纤维帽增厚不仅是斑块对LLT最

在过去二十年间,一系列的冠状动脉影像学研究一致表明,降脂治疗(LLT)可使斑块表型发生有利变化。本文对相关研究进行回顾,旨在探讨斑块表型变化的时间进程。斑块对LLT的反应似乎始于纤维帽增厚,随后是脂质成分减少,最终是斑块体积回缩。纤维帽增厚不仅是斑块对LLT最早且最敏感的反应,而且其与脂质成分的减少相结合,还可提供冠状动脉疾病保护作用。系列研究显示,LLT可使斑块体积发生微小但显著的回缩,多提示斑块稳定而非管腔扩张。整合现有文献获得的见解将有助于为临床实践中更好进行脂质管理提供参考,并指导未来研究的设计。

脂蛋白代谢异常是最重要的可修饰心血管危险因素之一[1], 他汀类药物[2-4]、胆固醇吸收抑制剂依折麦布[5-6]和前蛋白转化酶枯草溶菌素/kexin9型(PCSK9)抑制剂[7-8]对冠状动脉疾病(CAD)的预防作用已经变得明显。冠状动脉影像学研究已经提供了关于LLT患者临床预后改善机制的见解[9]20世纪90年代,血管造影研究显示LLT可改善管腔狭窄程度[10]。2000年代,血管内超声(IVUS)研究显示 LLT可减轻动脉斑块负荷。2010年代,近红外光谱(NIRS)或光学相干层扫描(OCT)研究相继开展,提示LLT 可改善斑块易感性。近年来,研究还通过IVUS、NIRS和OCT评估了PCSK9抑制剂对斑块特征的影响。

然而,在上述IVUS、NIRS 和 OCT相关研究中,由于冠脉内成像具有有创性,且多数研究仅通过基线与单一随访时间点的对比来评估斑块对降脂治疗的反应,且随访周期从数周到数年不等,因此目前尚未明确斑块对LLT反应的变化顺序。

系列血管内成像研究的临床意义得到了成像结果预后价值的支持:IVUS 和NIRS显示的高粥样硬化负荷[11-16] 、高脂质成分[15-18],以及OCT显示的富脂斑块和薄纤维帽纤维粥样硬化斑块(TCFA)[19-24],均与不良预后相关。然而,现有预后研究多基于单次成像评估,在我们对动脉粥样硬化斑块自然史的理解中存在缺失。

本文汇总了体内检测到的斑块表型变化的总结,或有助于更好地理解动脉粥样硬化旋转斑块形成的发病机制和稳定过程,也有助于设计未来研究,以探讨斑块稳定的干预措施。

LLT 期间通过冠状动脉内成像评估斑块表型变化

目前临床常用的血管内成像有三种:IVUS、NIRS 和 OCT。这三种技术的成像原理相似:将成像导管推进到靶斑块远端,探针自动收回,同时通过检测超声波或近红外光的反射依次收集横截面信息,从而实现斑块体积和形态学评估。本节主要关注临床相关参数,包括动脉粥样硬化体积百分比(PAV)、4 mm节段的最大脂质核心负荷指数(max-LCBI 4 mm)和最小纤维帽厚度(FCT)。

下文将按降脂治疗(不同强度他汀类药物或其他降脂药物)启动后这些参数的变化顺序,对系列血管内成像研究进行综述。由于各研究在患者基线特征、观察病灶、降脂方案上存在差异,且成像评估间隔因研究设计不同而有所区别,直接对比各研究结果存在局限性。然而,对随访周期相近的研究进行综合分析,将有助于了解不同斑块成分对降脂治疗反应的速度与敏感性,进而深化对其临床意义的理解。

1.基线至6个月

几项持续数周至数月的随访研究表明,FCT 增加是第一个可检测到的结构性因素,随后是脂质成分的减少。

ESCORT 研究将急性冠状动脉综合征(ACS)患者随机分为早期他汀组(从基线开始中等强度他汀治疗)和晚期他汀组(从基线后3周开始中等强度他汀治疗), 并在第3周和第 6周时进行 OCT随访[25]。随访3周显示,早期他汀组的FCT厚度较基线增加,而晚期他汀组(尚未起始他汀治疗)的FCT厚度较基线减少。OCT上的脂质表现以低信号区域和弥漫边界为特征。脂质弧是在OCT横截面图像上测量的脂质区域与相邻高信号区域边界之间的夹角。在早期他汀类药物组中,斑块最大脂质弧在基线和3周时无显著差异,而在36周时显著降低,表明他汀类药物治疗引起的FCT变化先于脂质弧变化[25]一项回顾性研究显示,对于接受他汀治疗的患者,无论是否联合PCSK9抑制剂,在4周随访时FCT均增厚,且联合PCSK9抑制剂治疗组患者的FCT 增厚程度更显著YELLOW研究随访7周显示,对于需要接受经皮冠状动脉介入治疗(PCI)的患者,高强度他汀类药物治疗可显著降低低密度脂蛋白胆固醇(LDL-C)水平和maxLCBI4mm 但斑块负荷无显著变化[27]。YELLOW II 单臂研究[28]显示,FCT显著增厚,导致TCFA患病率下降。然而,尽管LDL-C水平降低,但PAV、maxLCBI4mm和OCT衍生的脂质体积指数无显著变化。这两项研究分别表明,与斑块负荷相比,maxLCBI₄mm能更早、更敏感地反映LLT疗效;而FCT变化又早于PAV和maxLCBI₄mm对降脂治疗的反应。然而,YELLOW和YELLOW II研究的结果存在矛盾:在YELLOW 研究中可观察到瑞舒伐他汀(40 mg)可改善 maxLCBI4mm,而在YELLOW II 研究中并未观察到这一现象。究其原因,可能是YELLOW 研究中随机分配至强化他汀治疗组患者的基线 maxLCBI₄mmₘₘ显著更高(中位数高于 YELLOW II 研究的均值);且YELLOW II 研究排除了 maxLCBI₄mm部分研究随访 6 个月。ESTABLISH研究表明,他汀类药物治疗可显著降低ACS患者的斑块体积[29],但研究并未分析PAV的变化。另两项研究[30-31]显示,在 6 个月时,所有进行他汀类药物治疗患者的FCT均显著变厚;但PAV与基线相比没有显著变化。其中一项研究随访6个月显示,阿托伐他汀(60 mg)组的平均脂质弧线显著变小,而20 mg组并未变小[30]。

上下滑动查看全部研究结果

总体而言,上述研究表明,FCT增厚是LLT 最早和最敏感的变化,其次是脂质成分的变化。

2.6-9个随访

在6-9个月内,LLT对PAV消退的益处仍不明显,但对FCT和脂质成分的有利影响显而易见。

TRUTH研究显示,在8个月时,匹伐他汀(4 mg)组和普伐他汀(20 mg)组的PAV均无变化;但虚拟组织学(VH)-IVUS 检测显示,匹伐他汀组的坏死核心成分减少,两组的纤维脂肪成分均减少[32]。

Odyssey J-IVUS 研究随访36周显示,阿利西尤单抗组的LDL-C水平在随访期间显著降低;但标准化总粥样硬化体积百分比变化和PAV绝对变化在两组间无显著差异[33]。然而,本研究存在一定的局限性:①该研究设计要求标准治疗组在单纯他汀治疗效果不佳时加用其他药物,导致研究期间依折麦布的联合使用率从7.9% 升至 48.0%;②研究样本量较小。尽管目前仍需进行专门设计的研究验证上述结果,但这些发现提示,PAV 消退至少需要9个月时间,或者对LDL-C水平降低的敏感性有限。

尽管如此,无论采取哪种LLT策略,随访9个月的系列OCT影像学研究均一致揭示了LLT对FCT增加的影响。Hattori 等[34]和Takarada 等[35]的研究随访9个月,分别在稳定性心绞痛(SAP)和急性心肌梗死(AMI)患者中证实了,进行他汀类药物治疗患者的FCT变化显著大于未接受他汀类药物治疗患者。Hattori等的研究还通过系列灰阶IVUS和整合背向散射(IB)-IVUS 分析发现,他汀治疗组的粥样硬化体积百分比指数以及脂质和纤维体积指数均减小,而未接受他汀治疗组的这些参数无变化[34]Imanishi 等[36]报道显示,他汀类药物治疗组患者在9个月随访期间的 FCT 增厚更为显著,且FCT 的变化与部分单核细胞亚群呈负相关。在他汀单药治疗研究的基础上,后续研究随访9个月发现,他汀联合依折麦布[37]或二十碳五烯酸[38]治疗,不仅可使FCT增厚更为显著,还能改善脂质弧和巨噬细胞浸润程度。一项使用PCSK9 抑制剂的OCT 研究随访36周显示,与标准治疗组相比,阿利西尤单抗联合他汀组FCT增厚更显著,TCFA 发生率显著更低[39]。

上下滑动查看全部研究结果

总体而言,在6-9个月期间,脂质成分降低和FCT 增厚均可被检测到,但太可能观察到PAV回缩。

3.9 ~12个月随访

许多研究探究了他汀类药物、依折麦布或PCSK9 抑制剂在9 ~12个月期间的作用。再次期间,LLT对PAV消退的益处似乎变得更为明显,但不同研究间的结果并不一致,但FCT增厚和脂质成分减少的益处显而易见。

(1)他汀类药物相关研究

JAPAN-ACS研究随访 8~12 个月显示,在进行匹他伐他汀(4 mg)或阿托伐他汀(20 mg)治疗的ACS患者组,均可观察到PAV的显著消退 [40]。

Hong 等[41] 报道随访11 个月显示,进行瑞舒伐他汀(20 mg)和阿托伐他汀(40 mg)治疗患者的PAV 变化没有显著差异。

ALTAIR 研究[42]随访48 周显示,服用20 mg瑞舒伐他汀的患者总斑块体积显著降低,而服用2.5 mg 的患者没有显著降低,而两组患者血管镜下的黄斑块的颜色等级均显著降低。

STABLE研究[43]以VH-IVUS评估的斑块成分变化为主要终点,随访12个月显示,瑞舒伐他汀治疗可减少坏死核心体积、增加纤维脂肪体积。然而,虽然在12个月时,瑞舒伐他汀40mg 组患者的LDL-C水平显著低于10mg组,但随访期间两组的PAV 变化及VH-IVUS 测得的成分体积参数变化均无差异。上述结果提示,IVUS测得的动脉粥样硬化负荷对LLT疗效的敏感性有限。

IBIS-3研究随访12个月显示,高强度瑞舒伐他汀治疗未能显著降低坏死性核心体积和maxLCBI4mm,但PAV有所改善[44],且maxLCBI4mm最高四分位数组(maxLCBI4mm> 319)患者的maxLCBI4mm显著降低。鉴于PROSPECT II 研究提示maxLCBI4mm阈值> 324.7 或与不良结果相关[16],故该亚组中的maxLCBI4mm 下降或具有临床相关性。EASY-FIT 研究[45]随访12个月显示,高剂量阿托伐他汀(20 mg)较低剂量阿托伐他丁(5 mg)或具有更大的FCT增厚,且高剂量他汀组的脂质弧和巨噬细胞分级进一步下降。此外,FCT 增厚与LDL-C水平、高敏C反应蛋白(his-CRP)和基质金属蛋白酶 9(MMP-9)的降低相关。这些发现表明,他汀类药物治疗>9个月,可使FCT 和脂质成分发生有利变化,同时减轻炎症反应,并降低动脉粥样硬化斑块负荷。

(2)依折麦布相关研究

几项研究报道了依折麦布对FCT 或PAV的影响。

一项随访12个月的随机研究表明,他汀联合或不联合依折麦布治疗均可使FCT显著增厚,但两组患者的FCT增厚程度无显著差异[46]。

PRECISE-IVUS研究[47]随访9~12个月显示,他汀联合或不联合依折麦布治疗均可使PAV显著下降,且他汀联合依折麦布组的PAV下降幅度更大。

HEAVEN研究[48]显示,进行阿托伐他汀和依折麦布联合治疗组的SAP患者的PAV略有下降,但标准他汀类治疗组的PAV 增加。随访期间的斑块成分变化在两组之间没有显著差异。

(3)PCSK9 抑制剂相关研究

三项相关研究探究了PCSK9抑制剂对maxLCBI4mm和PAV变化的影响。

Ota等[49]中位随访314天显示,PCSK9抑制剂组和对照组(非PCSK9 抑制剂强化治疗)的maxLCBI4mm均显著低于基线水平;且PCSK9 抑制剂组的回缩程度更为显著。此外,PCSK9抑制剂组的PAV较基线显著降低,但对照组无显著变化;提示maxLCBI4mm可反映LDL-C变化,且其敏感性高于PAV。HUYGENS[50] 和PACMAN-AMI试验[51]表明,将PCSK9抑制剂添加到高强度他汀类治疗中,可导致FCT增厚程度,脂质弧和巨噬细胞侵润程度的降低也更为明显。值得一提的是,这两项研究的基线FCT差异很大:PACMAN-AMI 试验的平均基线最薄FCT>100μm, 而>70%的HUYGENS试验患者的基线FCT最薄

研究提示,无论基线斑块特征如何,PCSK9 抑制剂均可实现斑块稳定;且PCSK9 抑制剂组的maxLCBI₄mm降低幅度和 PAV 消退程度均显著大于安慰剂组[50-51]。但这两项研究均分析了狭窄程度

值得注意的是,病灶水平显示的PAV 回缩或较片段水平更为明显(<5% vs 2%)。PACMAN-AMI[52]是一项基于病灶水平评估的亚组分析,其显示阿利西尤单抗组的PAV回缩率为- 4.86%, 安慰剂组为- 2.78%。此外,研究还显示,阿利西尤单抗组病变水平的FCT增厚、maxLCBI4mm 减少和 PAV 回缩更大。随访52周显示,TCFA 在所有队列中几乎完全消失。在阿利西尤单抗治疗组,61.8% 的基线maxLCBI4mm≥400 的病变在随访时达到400以下,41.1%的基线横断面斑块负荷≥70% 的病变在随访时

上下滑动查看全部研究结果

4.>12个月随访

在随访时间>12个月的研究中,PAV 消退现象更为明显,但消退幅度通常较小。

IBIS-4试验随访13个月显示,进行瑞舒伐他汀(40 mg)治疗的STEMI患者的PAV显著降低[53]。对该队列的OCT分析显示,FCT增厚可使TCFA 频繁回缩,并且巨噬细胞侵润角度也降低[54]。

GLAGOV试验随访1.5年[55]显示,在高强度他汀治疗基础上加用依洛尤单抗可使PAV 显著降低,但即使加用依洛尤单抗,斑块回缩也很小(PAV =- 0.95%)。

REVERSAL研究[56]随访18个月显示,阿托伐他汀(80 mg)组的斑块体积变化显著优于普拉伐他汀(40 mg)组:总粥样硬化动脉斑块体积变化百分比分别为- 0.4%和2.7%,PAV 的绝对变化率分别为0.2%和1.6%。

ASTEROID单臂研究[57]随访24个月显示,进行瑞舒伐他汀(40 mg)治疗可显著降低PAV水平。SATURN试验随访104周[58]显示,阿托伐他汀(80 mg)和瑞舒伐他汀(40 mg)均可降低有临床冠状动脉造影指征患者的PAV 水平[58]。因此,ASTEROID和 SATURN试验在2年后都显示出对高强度他汀治疗的反应,PAV 略有(约 1%)但显著的绝对降低。这些IVUS研究是在血管水平进行的,且不考虑潜在的动脉粥样硬化负担。因此,在>12个月的随访研究中,一致报告了LLT对动脉粥样硬化退化的影响。此外,冠状动脉CT显影(CCTA)的侵袭性小于血管内成像方式,可能更容易用于系列评估,但CCTA 的低分辨率限制了评估斑块详细形态变化的可行性。一项荟萃分析汇总了随访时间为6~38.4个月的小规模研究,显示他汀类药物治疗可减少低衰减斑块体积,同时增加钙化斑块体积,而强化他汀类药物治疗则降低了总斑块体积[59]。PARADIGM试验平均随访3.8年显示,他汀类药物治疗可延缓总斑块体积增加,同时增加钙化斑块体积,并减少高危斑块特征[60]。另一项评估随访6.2 年的前瞻性研究表明,他汀类药物的使用与非钙化斑块体积的减少和钙化斑块体积的增加相关;他汀类药物的使用与总斑块体积之间没有相关性[61]。

LLT启动后斑块表型变化的时间进程

既往CCTA研究表明,长期LLT会增加钙化斑块体积,图1显示了LLT 启动后斑块表型变化的时间进展,代表了对LLT 反应的有利变化,包括 PAV 回缩、maxLCBI4mm 减少和 FCT 增加[51]。

图1 PAV 回缩、maxLCBI4mm 减少和 FCT 增加的代表性图像

注:a,b:IVUS 中的 PAV回缩;c,d:NIRS 中的 maxLCBI4mm 减少;e,f:OCT 中的 FCT 增加

图2总结了随访期间 FCT、maxLCBI4mm 和 PAV 从基线到随访的绝对变化。多模态研究,包括PAV、maxLCBI4mm和FCT 的评估,对于理解斑块表型变化的顺序和临床意义至关重要,因为这些发现与临床结局相关。此外,同时采用灰阶IVUS、VH-IVUS 和 OCT 评估 FCT 与脂质成分的研究也具有重要参考意义。由于同时评估上述成像参数的研究数量有限,且随访周期多为人为设定(非基于生物学机制确定),因此难以完整呈现斑块表型变化的自然时间进程。然而,对随访周期相近的既往研究进行综合分析,仍可了解不同斑块成分对降脂治疗反应的速度与敏感性。

图2 与基线相比,不同随访周期的FCT、maxLCBI4mm 和 PAV 变化

斑块对降脂治疗的反应序列推测如下:首先是 OCT 检测到的 FCT 增厚 [25,26,28,30,31],随后是 NIRS 和 OCT 检测到的脂质成分减少[27,30,37,38,45,50,51],导致TCFA 发生率降低;同时,OCT显示的其他斑块易损性特征[38,45,50,51](如巨噬细胞浸润的存在及程度)也会发生变化;最终则表现为 PAV 降低总的来说,FCT是指示最早对 LLT 产生斑块反应的参数,具有高灵敏度,而斑块消退(以PAV减少为代表)则在后期观察到,通常在随访 9~12 个月后。然而,PAV 的绝对变化仅约1%~2%, 目前且对PAV减少的预后价值机制提出了疑问PACMAN-AMI 研究中多模态冠状动脉成像与预后关系的分析为该问题提供了线索。Biccirè 等报道,在强化降脂治疗下,同时实现粥样硬化体积减少、脂质成分减少和 FCT 增厚的患者,其主要不良心血管事件(MACE,包括死亡、心肌梗死和缺血驱动的血运重建)发生率显著更低。在52 周随访期间,在所有成像血管均实现PAV降低的患者(约75%)中,67% 同时出现 maxLCBI4mm降低,63% 同时出现最小 FCT 增厚[63,64]。同样,既往一项基于多模态冠状动脉影像学评估的研究报道了PAV、maxLCBI4mm 和TCFA[65]之间的相关性。这些结果或解释为什么PAV仅有轻微变化也与更好的预后相关,即LLT引起的斑块消退,是斑块通过成分改变实现稳定的标志,而非单纯的管腔保留或扩大。

LLT的大部分预后价值可能并非来自斑块消退本身,而是来自FCT增厚和脂质成分减少所反映的斑块稳定。

关于FCT 增厚的临床意义,目前尚无研究评估FCT变化与预后之间的直接关系。然而,考虑到TCFA的预后价值,FCT增厚可能导致临床结果改善。尽管TCFA不一定直接导致硬终点的发生,但其或为MACE风险升高的预测因子[22-24]TCFA 相关 MACE 的一种可能机制是无症状血栓事件导致的管腔快速狭窄(这种情况有时会反复发生)。研究表明,斑块进展呈阶段性而非线性[66](图 3),尤其是富脂斑块会以分阶段方式进展[67]。

图3 从基线到6 个月和 12 个月期间的斑块进展模式

注:在有进展的病灶中,三分之一呈现渐进模式,三分之二呈现快速阶段性进展模式。a.非进展, b.缓慢线性进展, c.早期快速阶段性进展和d晚期快速阶段性进展

血栓的临床表现取决于局部和全身性血栓形成与内源性抗血栓形成防御机制之间的平衡[69];在斑块破裂或侵蚀之后会形成血栓,当血栓形成超过防御机制时,将形成闭塞性血栓,导致ACS或猝死。反之,强大的防御机制将导致非闭塞性血栓形成,随后血栓机化形成新的纤维层(层状斑块或愈合斑块),实现斑块稳定但伴随管腔丢失。

斑块中脂质成分的减少不仅有助于FCT增厚,还可能降低局部血栓形成。斑块内的脂质核心被认为是已知的最易致血栓形成的斑块成分[70]。因此,LLT所致FCT增厚和脂质成分减少,不仅可使ACS 发生率减少还可使 SAP发生率减少。

总之,IVUS测得的PAV 回缩的预后价值可以基于冠状动脉粥样硬化斑块的稳定。斑块消退是脂质成分减少和炎症减轻的晚期结果。在这个过程中,斑块随着FCT增厚趋于稳定。脂质成分的减少有助于FCT增厚,这一点得到了PACMAN-AMI 研究中FCT与maxLCBI4mm呈负相关结果的支持。

理论上,LLT启动后,FCT、脂质成分和斑块体积的微观变化可能同时开始,但变化幅度和诊断技术的敏感性或有所不同。在现有成像技术中,高分辨率 OCT 可最早检测到 FCT 变化,随后 NIRS 可检测到斑块内脂质减少,最后 IVUS 可检测到斑块体积变化。基于传统血管水平评估的 PAV 降低或为LLT效果的标志,且与更好的预后相关[62-63]。相比之下,纤维帽厚度和TCFA消退反映了斑块表型的早期变化,并可以预测血管对LLT的反应以及可能的未来心脏事件。例如,心梗后6~10 周内LDL-C水平的大幅降低与有利预后相关[71], 这强调了早期脂质降低的重要性。FCT 可能反映了LLT在如此短时间内的功效,并支持预后相关机制。FCT有助于评估 LLT 在数周到数月内的影响,以及比较不同降脂策略对斑块特征的影响;这一见解将有助于设计未来关于 LLT 的研究。

总体而言,图4总结了LLT 提供的斑块表型变化的时间过程及其伴随的临床意义,这不仅提供了LLT 对CAD 预防作用的机制,还有助于我们更好地理解斑块稳定过程的发病机制。LLT 药物的多效性作用可能提供斑块表型的变化,超出 LDL-C降低的范围,这是未来研究的一个主题。

图4 血管内成像变化的时间过程及其对LLT 反应的临床影响

自最初确定LLT 预后价值的临床试验以来,已经进行了许多系列 IVUS、NIRS 和 OCT 试验。LLT 导致 FCT 增厚,随后脂质成分退化,最后整体斑块体积退化。FCT 是反映 LLT 疗效的早期和敏感指标。PAV 略微减少的影响是斑块稳定的晚期标志,而不是管腔扩张。然而,在既往研究中,随访成像的时间是任意的,需要未来具有预先设定随访期的多模态研究来揭示LLT 期间斑块表型变化的具体时间过程。

然而,在临床实践和解释先前研究中应用这种建议的时间序列存在几个局限性:

①FCT 评估的可重复性可能存在问题②在OCT下区分TCFA 和巨噬细胞侵润有时存在挑战性,因为巨噬细胞在斑块表面线性侵润形成高强度线,并伴随着后方衰减,类似于TCFA, 而误诊可能导致对 LLT 疗效的误解。人工智能算法可以解决这个问题[73], 而且用三维方法进行FCT测量,而不是测量单个截面中的单个点,可以提供更准确的FCT 评估[74]。

③尽管MaxLCBI4mm降低、VH-IVUS测得的坏死核心大小和OCT测得的脂质弧减少,均表明脂质成分的减少,但目前缺乏这些参数之间的直接比较,同一病灶中这三项指标可能存在差异,且各自的意义也可能不同。

④斑块特征的变化是动态和复杂的,目前尚不清楚在LLT 启动后,随着时间推移出现的所有有利变化是否会在任何时间点出现。

⑤成像参数变化的重要性受到样本量和参数检测敏感性的影响。

因此,未来需要进行具有不同随访周期的多模态大规模前瞻性研究,以揭示斑块表型变化的详细时间过程。

LLT 响应的成像特征和决定因素

本节从冠状动脉影像学的角度总结了LLT 对具有特定特征患者的疗效。

SATURN试验事后分析随访24个月(IVUS 评估)显示,与未使用ACS的患者相比,高强度他汀类药物治疗可提供了更大的斑块消退和MACE改善在一项基于OCT成像的研究显示,ACS 是他汀类药物治疗后血管产生有利反应的独立预测因子[76]。此外,基线FCT 较薄的患者,在进行他汀类药物治疗后FCT增厚的幅度较大[35]FOURIER 研究的亚组分析显示,高危患者(近期心梗、既往≥2次心梗或多支血管冠脉疾病)接受治疗后的风险降低幅度大于低危患者关于CAD 的临床表现与非罪犯病变的斑块特征之间的关联,已有多项研究。在一项三血管OCT 研究显示,ACS患者的非罪犯斑块较SAP患者的FCT更薄[78]。根据COMPLETE 研究显示,近50%的STEMI患者至少有一处TCFA 的狭窄病变[79]。对斑块侵蚀和斑块破裂的罪犯病灶进行对比发现,破裂病灶患者非罪犯病灶的TCFA发生率高于侵蚀病灶患者[80]。此外,已知未经治疗的非罪犯病变在 ACS 患者中的MACE 发生率高于SAP[81]患者。

总的来说,有全身性炎症升高的高危患者(如ACS 患者,特别是斑块破裂和多血管疾病患者),可能从LLT 中获益最大,治疗后斑块稳定的效果或更为显著。此外,仅凭患者特征、临床表型和缺血评估,难以可靠地预测斑块易损性。未来进行生物标志物(包括蛋白质组学、代谢组学、转录组学或多基因风险评分)相关研究,或有助于识别未来心脏事件高危患者。目前,在PCI 期间通过冠状动脉成像识别具有易损特征的非罪犯斑块,或有助于未来进行风险分层。

LLT 的启动时机及疗程

来自胆固醇治疗试验者协作组的荟萃分析显示,无论患者风险水平、CAD 病史或基线 LDL-C水平如何,心血管事件发生率均会随LDL-C水平的降低而呈比例地减少[2-4]。另一项荟萃分析显示,无论采用何种降脂药,LLT 均可使患者获益[82]。目前,欧美脂质管理指南[83-84]均建议高危人群使用高强度他汀类药物、依折麦布和PCSK9抑制剂进行LLT,以进行一级预防和CAD 二级预防,尤其推荐ACS患者在二级预防中尽早启动强化降脂治疗SWEDEHERT注册研究中位随访3.2年显示,10.2%的首发心梗患者因再次心梗住院,且非罪犯病灶相关的再次心肌梗死风险是罪犯病灶的2 倍[86]。众所周知,ACS 患者在发病后早期发生ACS等复发性心血管事件的发生率较高[87-88]。结合前文所述斑块表型在数周至数月内即可改善的结论,ACS 后尽早启动高强度降脂治疗,可能有助于降低心血管风险。MIRACL研究显示,与安慰剂相比,强化他汀治疗可降低16% 的MACE风险,且事件曲线在4 周时即开始出现分离[89]PROVE IT-TIMI 22 研究[22]表明,与使用普伐他汀(40 mg)的患者相比,进行阿托伐他汀(80 mg)治疗的ACS患者的MACE风险显著降低16%, 且早在3 个月时即存在差异[90]。有研究显示,他汀联合依折麦布治疗可改善ACS患者的预后[6]。

Odyssey Outcomes 研究随访2.8年显示,与在基线时便进行安慰剂联合他汀治疗的患者相比,在基线时进行阿利西尤单抗联合他汀治疗且中位8.3个月时转为安慰剂联合他汀治疗的患者的MACE发生率更低[91]。

FOURIER OLE 研究比较了 FOURIER 研究(随访 2.2 年)后启动依洛尤单抗治疗的患者与 FOURIER 研究期间持续接受依洛尤单抗治疗的患者,结果显示,从研究开始即接受依洛尤单抗治疗的患者,在中位5年随访期间的风险降低 15%[92]。

考虑到斑块表型变化的时间过程,这两项研究中的PCSK9 抑制剂应该分别在8.3个月和2.2年内为冠状动脉斑块提供了有利的变化。

一项回顾性研究表明,ACS后3个月内进行PCSK9 抑制剂治疗,可降低1年时的MACE发生率, 特别是1年时的血运重建率[93]。

这些研究表明,早期强化LLT 的有利斑块表型变化可能有助于患者后续的预后改善。

WOSCPOS试验探讨了他汀类药物治疗的长期(20 年)疗效,结果表明早期起始强化LLT对一级和二级预防均有益[94]。近日,累积LDL-C暴露水平升高被认为是冠心病的危险因素[95] ,而他汀治疗的结局获益被认为与冠状动脉斑块稳定相关。

上下滑动查看全部研究结果

结 论

LLT 在冠状动脉疾病一级和二级预防中的预后价值得到了斑块特征有利变化的支持。从他汀类药物治疗到 PCSK9 抑制剂的出现,冠状动脉影像学的应用也已经从IVUS 的体积分析扩展到 NIRS 的脂质成分评估和 OCT易损斑块的评估。

总体而言,FCT 似乎是对LLT最早且最敏感的反应指标,其次是脂质成分的变化,最终实现斑块体积的消退。然而,斑块表型变化与临床结局改善的直接相关性仍需进一步研究证实;斑块表型改善是否能降低侵蚀性斑块所致ACS 的发生率(占ACS总数的40%-50%)也尚未可知。

本文旨在整合既往相关研究,但在全面呈现降脂治疗期间斑块表型变化的严谨时间进程方面仍存在局限性。未来需要开展采用多种血管内成像技术、设置不同随访周期的研究,以进一步明确这一过程。

参考文献

1. Yusuf, S. et al. Efect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the

INTERHEART study): case–control study. Lancet 364, 937–952 (2004).

2. Cholesterol Treatment Trialists’ (CTT) Collaboration et al.Eficacy and safety of more intensive lowering of LDL cholesterol: a

meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376, 1670–1681 (2010).

3. Cholesterol Treatment Trialists’ (CTT) Collaborators et al.The efects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet 380, 581–590 (2012).

4. Cholesterol Treatment Trialists’ (CTT) Collaboration et al.Eficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet 385, 1397–1405 (2015).

5. Baigent, C. et al. The efects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney

disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet 377, 2181–2192 (2011).

6. Cannon, C. P. et al. Ezetimibe added to statin therapy after acute coronary syndromes. N. Engl. J. Med. 372, 2387–2397

(2015).

7. Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376,

1713–1722 (2017).

8. Schwartz, G. G. et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N. Engl. J. Med. 379, 2097–2107 (2018).

9. Brown, G. et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N. Engl. J. Med. 323, 1289–1298 (1990).

10. Jukema, J. W. et al. Efects of lipid lowering by pravastatin on progression and regression of coronary artery disease in

symptomatic men with normal to moderately elevated serum cholesterol levels. The Regression Growth Evaluation Statin Study (REGRESS). Circulation 91, 2528–2540 (1995).

11. Stone, G. W. et al. A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 364, 226–235 (2011).

12. Calvert, P. A. et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in Vulnerable Atherosclerosis) Study. JACC Cardiovasc. Imaging 4, 894–901 (2011).

13. Cheng, J. M. et al. In vivo detection of high-risk coronary plaques by radiofrequency intravascular ultrasound and cardiovascular outcome: results of the ATHEROREMO-IVUS study. Eur. Heart J. 35, 639–647 (2014).

14. Schuurman, A. S. et al. Prognostic value of intravascular ultrasound in patients with coronary artery disease. J. Am. Coll.

Cardiol. 72, 2003–2011 (2018).

15. Waksman, R. et al. Identification of patients and plaques vulnerable to future coronary events with near-infrared

spectroscopy intravascular ultrasound imaging: a prospective, cohort study. Lancet 394, 1629–1637 (2019).

16. Erlinge, D. et al. Identification of vulnerable plaques and patients by intracoronary near-infrared spectroscopy and ultrasound (PROSPECT II): a prospective natural history study. Lancet 397, 985–995 (2021).

17. Oemrawsingh, R. M. et al. Near-infrared spectroscopy predicts cardiovascular outcome in patients with coronary artery disease. J. Am. Coll. Cardiol. 64, 2510–2518 (2014).

18. Madder, R. D. et al. Large lipid-rich coronary plaques detected by near-infrared spectroscopy at non-stented sites in the target artery identify patients likely to experience future major adverse cardiovascular events. Eur. Heart J. Cardiovasc. Imaging 17, 393–399 (2016).

19. Xing, L. et al. Clinical significance of lipid-rich plaque detected by optical coherence tomography: a 4-year follow-up study. J. Am. Coll. Cardiol. 69, 2502–2513 (2017).

20. Prati, F. et al. Relationship between coronary plaque morphology of the left anterior descending artery and 12 months clinical outcome: the CLIMA study. Eur. Heart J. 41, 383–391 (2020).

21. Kubo, T. et al. Optical coherence tomography detection of vulnerable plaques at high risk of developing acute coronary

syndrome. Eur. Heart J. Cardiovasc. Imaging 22, 1376–1384 (2021).

22. Kedhi, E. et al. Thin-cap fibroatheroma predicts clinical events in diabetic patients with normal fractional flow reserve:

the COMBINE OCT-FFR trial. Eur. Heart J. 42, 4671–4679 (2021).

23. Jiang, S. et al. Identification of high-risk coronary lesions by 3-vessel optical coherence tomography. J. Am. Coll. Cardiol. 81, 1217–1230 (2023).

24. Mol, J. Q. et al. Fractional flow reserve-negative high-risk plaques and clinical outcomes after myocardial infarction. JAMA Cardiol. 8, 1013–1021 (2023).

25. Nishiguchi, T. et al. Efect of early pitavastatin therapy on coronary fibrous-cap thickness assessed by optical coherence

tomography in patients with acute coronary syndrome: the ESCORT study. JACC Cardiovasc. Imaging 11, 829–838

(2018). Statin therapy increased FCT within only 3 weeks, and lipid parameters improved within 36 weeks.

26. Yano, H., Horinaka, S. & Ishimitsu, T. Efect of evolocumab therapy on coronary fibrous cap thickness assessed by optical coherence tomography in patients with acute coronary syndrome. J. Cardiol. 75, 289–295 (2020).

27. Kini, A. S. et al. Changes in plaque lipid content after short-term intensive versus standard statin therapy: the YELLOW trial

(reduction in yellow plaque by aggressive lipid-lowering therapy). J. Am. Coll. Cardiol. 62, 21–29 (2013).

28. Kini, A. S. et al. Intracoronary imaging, cholesterol eflux, and transcriptomes after intensive statin treatment: the YELLOW II study. J. Am. Coll. Cardiol. 69, 628–640 (2017). Intensive statin therapy for 8–12 weeks provided an increase of FCT without significant changes in lipid component and atheroma burden, and some unique clusters of genes were associated with favorable FCT changes.

29. Okazaki, S. et al. Early statin treatment in patients with acute coronary syndrome: demonstration of the beneficial efect

on atherosclerotic lesions by serial volumetric intravascular ultrasound analysis during half a year after coronary event: the

ESTABLISH Study. Circulation 110, 1061–1068 (2004).

30. Hou, J. et al. Comparison of intensive versus moderate lipid-lowering therapy on fibrous cap and atheroma volume

of coronary lipid-rich plaque using serial optical coherence tomography and intravascular ultrasound imaging. Am. J. Cardiol.

117, 800–806 (2016).

31. Thondapu, V. et al. Comparison of rosuvastatin versus atorvastatin for coronary plaque stabilization. Am. J. Cardiol. 123, 1565–1571 (2019).

32. Nozue, T. et al. Statin treatment for coronary artery plaque composition based on intravascular ultrasound radiofrequency

data analysis. Am. Heart J. 163, 191–199 (2012).

33. Ako, J. et al. Efect of alirocumab on coronary atheroma volume in Japanese patients with acute coronary syndrome- the ODYSSEY J-IVUS trial. Circ. J. 83, 2025–2033 (2019).

34. Hattori, K. et al. Impact of statin therapy on plaque characteristics as assessed by serial OCT, grayscale and integrated backscatterIVUS. JACC Cardiovasc. Imaging 5, 169–177 (2012).

35. Takarada, S. et al. Efect of statin therapy on coronary fibrous-cap thickness in patients with acute coronary syndrome: assessment by optical coherence tomography study. Atherosclerosis 202, 491–497 (2009).

36. Imanishi, T. et al. Association of monocyte subset counts with coronary fibrous cap thickness in patients with unstable angina pectoris. Atherosclerosis 212, 628–635 (2010).

37. Habara, M. et al. Impact on optical coherence tomographic coronary findings of fluvastatin alone versus

fluvastatin+ezetimibe. Am. J. Cardiol. 113, 580–587 (2014).

38. Nishio, R. et al. Stabilizing efect of combined eicosapentaenoic acid and statin therapy on coronary thin-cap fibroatheroma. Atherosclerosis 234, 114–119 (2014).

39. Gao, F. et al. Efect of alirocumab on coronary plaque in patients with coronary artery disease assessed by optical coherence tomography. Lipids Health Dis. 20, 106 (2021).

40. Hiro, T. et al. Efect of intensive statin therapy on regression of coronary atherosclerosis in patients with acute coronary

syndrome: a multicenter randomized trial evaluated by volumetric intravascular ultrasound using pitavastatin versus

atorvastatin (JAPAN-ACS [Japan assessment of pitavastatin and atorvastatin in acute coronary syndrome] study). J. Am. Coll.

Cardiol. 54, 293–302 (2009).

41. Hong, Y. J. et al. Comparison of efects of rosuvastatin and atorvastatin on plaque regression in Korean patients with untreated intermediate coronary stenosis. Circ. J. 75, 398–406 (2011).

42. Takayama, T. et al. Comparison of the efect of rosuvastatin 2.5mg vs 20mg on coronary plaque determined by angioscopy and intravascular ultrasound in Japanese with stable angina pectoris (from the aggressive lipid-lowering treatment approach using intensive rosuvastatin for vulnerable coronary artery plaque [ALTAIR] randomized trial). Am. J. Cardiol. 117, 1206–1212 (2016).

43. Park, S.-J. et al. Efect of statin treatment on modifying plaque composition. J. Am. Coll. Cardiol. 67, 1772–1783 (2016).

44. Oemrawsingh, R. M. et al. Integrated Biomarker and Imaging Study 3 (IBIS-3) to assess the ability of rosuvastatin to decrease necrotic core in coronary arteries. EuroIntervention 12, 734–739 (2016).

45. Komukai, K. et al. Efect of atorvastatin therapy on fibrous cap thickness in coronary atherosclerotic plaque as assessed by

optical coherence tomography: the EASY-FIT study. J. Am. Coll. Cardiol. 64, 2207–2217 (2014).

46. Hougaard, M. et al. Influence of ezetimibe on plaque morphology in patients with ST elevation myocardial infarction assessed by optical coherence tomography: an OCTIVUS sub-study. Cardiovasc. Revasc. Med. 21, 1417–1424 (2020).

47. Tsujita, K. et al. Impact of dual lipid-lowering strategy with ezetimibe and atorvastatin on coronary plaque regression

in patients with percutaneous coronary intervention: the multicenter randomized controlled PRECISE-IVUS trial. J. Am.

Coll. Cardiol. 66, 495–507 (2015).

48. Kovarnik, T. et al. Virtual histology evaluation of atherosclerosis regression during atorvastatin and ezetimibe administration: HEAVEN study. Circ. J. 76, 176–183 (2012).

49. Ota, H., Omori, H., Kawasaki, M., Hirakawa, A. & Matsuo, H. Clinical impact of PCSK9 inhibitor on stabilization and

regression of lipid-rich coronary plaques: a near-infrared spectroscopy study. Eur. Heart J. Cardiovasc. Imaging 23, 217–228

(2022).

50. Nicholls, S. J. et al. Efect of evolocumab on coronary plaque phenotype and burden in statin-treated patients following

myocardial infarction. JACC Cardiovasc. Imaging 15, 1308–1321 (2022).

51. Räber, L. et al. Efect of alirocumab added to high-intensity statin therapy on coronary atherosclerosis in patients with acute myocardial infarction: the PACMAN-AMI randomized clinical trial. JAMA 327, 1771–1781 (2022).

52.The largest multimodality study evaluating change in plaque phenotype during LLT. 52. Biccire, F. G. et al. Lesion-level efects of LDL-C-lowering therapy in patients with acute myocardial infarction: a post hoc analysis of the PACMAN-AMI trial. JAMA Cardiol. 9, 1082–1092 (2024).

53. Räber, L. et al. Efect of high-intensity statin therapy on atherosclerosis in non-infarct-related coronary arteries (IBIS-4):

a serial intravascular ultrasonography study. Eur. Heart J. 36, 490–500 (2015).

54. Räber, L. et al. Changes in coronary plaque composition in patients with acute myocardial infarction treated with

high-intensity statin therapy (IBIS-4): a serial optical coherence tomography study. JACC Cardiovasc. Imaging 12, 1518–1528

(2019).

55. Nicholls, S. J. et al. Efect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV

randomized clinical trial. JAMA 316, 2373–2384 (2016).

56. Nissen, S. E. et al. Efect of intensive compared with moderate lipid-lowering therapy on progression of coronary

atherosclerosis: a randomized controlled trial. JAMA 291, 1071–1080 (2004).

57. Nissen, S. E. et al. Efect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 295, 1556–1565 (2006).

58.An early study with serial assessment of atheroma burden with long-term follow-up: high-intensity statin therapy for 2 years provided a 0.98% decrease in PAV. 58. Nicholls, S. J. et al. Efect of two intensive statin regimens on progression of coronary disease. N. Engl. J. Med. 365, 2078–2087 (2011).

59. Andelius, L., Mortensen, M. B., Norgaard, B. L. & Abdulla, J. Impact of statin therapy on coronary plaque burden and composition assessed by coronary computed tomographic angiography: a systematic review and meta-analysis. Eur. Heart J. Cardiovasc. Imaging 19, 850–858 (2018).

60. Lee, S. E. et al. Efects of statins on coronary atherosclerotic plaques: the PARADIGM study. JACC Cardiovasc. Imaging 11,

1475–1484 (2018).

61. Smit, J. M. et al. Impact of clinical characteristics and statins on coronary plaque progression by serial computed tomography angiography. Circ. Cardiovasc. Imaging 13, e009750 (2020).

62. Nicholls, S. J. et al. Intravascular ultrasound-derived measures of coronary atherosclerotic plaque burden and clinical outcome. J. Am. Coll. Cardiol. 55, 2399–2407 (2010). A meta-analysis that demonstrated each standard deviation increase in PAV was associated with a 1.32-fold higher risk of MACE.

63. Iatan, I., Guan, M., Humphries, K. H., Yeoh, E. & Mancini, G. B. J. Atherosclerotic coronary plaque regression and risk of adverse cardiovascular events: a systematic review and updated meta-regression analysis. JAMA Cardiol. 8, 937–945 (2023).

A reduction in PAV of only 1% during LLT is associated with a 25% reduction in the odds of MACE.

64. Biccire, F. G. et al. Concomitant coronary atheroma regression and stabilization in response to lipid-lowering therapy. J. Am. Coll. Cardiol. 82, 1737–1747 (2023). Regression in plaque volume, reduction in lipid components and thickening of fibrous cap coexist at the 52-week follow-up after intensive LLT.

65. Zanchin, C. et al. In vivo relationship between near-infrared spectroscopy-detected lipid-rich plaques and morphological

plaque characteristics by optical coherence tomography and intravascular ultrasound: a multimodality intravascular imaging

study. Eur. Heart J. Cardiovasc. Imaging 22, 824–834 (2021).

66. Xie, Z. et al. Patterns of coronary plaque progression: phasicversus gradual. A combined optical coherence tomography and intravascular ultrasound study. Coron. Artery Dis. 27, 658–666 (2016).

67. Yamamoto, M. H. et al. Serial 3-vessel optical coherence tomography and intravascular ultrasound analysis of changing

morphologies associated with lesion progression in patients with stable angina pectoris. Circ. Cardiovasc. Imaging 10, e006347 (2017).

68. Araki, M. et al. Predictors of rapid plaque progression: an optical coherence tomography study. JACC Cardiovasc. Imaging 14, 1628–1638 (2021).

69. Vergallo, R. & Crea, F. Atherosclerotic plaque healing. N. Engl. J. Med. 383, 846–857 (2020).

70. Badimon, L., Padro, T. & Vilahur, G. Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. Eur. Heart J. Acute Cardiovasc. Care 1, 60–74 (2012).

71. Schubert, J. et al. Low-density lipoprotein cholesterol reduction and statin intensity in myocardial infarction patients and major adverse outcomes: a Swedish nationwide cohort study. Eur. Heart J. 42, 243–252 (2021).

72. Kini, A. S. et al. Fibrous cap thickness by optical coherence tomography in vivo. J. Am. Coll. Cardiol. 69, 644–657

(2017).

73. Chu, M. et al. Artificial intelligence and optical coherence tomography for the automatic characterisation of human

atherosclerotic plaques. EuroIntervention 17, 41–50 (2021).

74. Wang, Z. et al. Volumetric quantification of fibrous caps using intravascular optical coherence tomography. Biomed. Opt.

Express 3, 1413–1426 (2012).

75. Puri, R. et al. Antiatherosclerotic efects of long-term maximally intensive statin therapy after acute coronary syndrome: insights from Study of Coronary Atheroma by Intravascular Ultrasound: Efect of Rosuvastatin Versus Atorvastatin. Arterioscler. Thromb. Vasc. Biol. 34, 2465–2472 (2014).

76. Minami, Y. et al. Clinical predictors for lack of favorable vascular response to statin therapy in patients with coronary artery disease: a serial optical coherence tomography study. J. Am. Heart Assoc. 6, e006241 (2017).

77. Sabatine, M. S. et al. Clinical benefit of evolocumab by severity and extent of coronary artery disease: analysis from FOURIER. Circulation 138, 756–766 (2018). Patients with high-risk backgrounds benefit more from intensive LLT.

78. Kato, K. et al. Nonculprit plaques in patients with acute coronary syndromes have more vulnerable features compared with those with non-acute coronary syndromes: a 3-vessel optical coherence tomography study. Circ. Cardiovasc. Imaging 5, 433–440 (2012).

79. Pinilla-Echeverri, N. et al. Nonculprit lesion plaque morphology in patients with ST-segment-elevation myocardial infarction: results from the COMPLETE trial optical coherence tomography substudys. Circ. Cardiovasc. Interv. 13, e008768 (2020).

80. Cao, M. et al. Pancoronary plaque characteristics in STEMI caused by culprit plaque erosion versus rupture: 3-vessel OCT study. JACC Cardiovasc. Imaging 14, 1235–1245 (2021).

81. Cerrato, E. et al. Revascularization deferral of nonculprit stenoses on the basis of fractional flow reserve: 1-year outcomes

of 8,579 patients. JACC Cardiovasc. Interv. 13, 1894–1903 (2020).

82. Silverman, M. G. et al. Association between lowering LDL-C and cardiovascular risk reduction among diferent therapeutic

interventions: a systematic review and meta-analysis. JAMA 316, 1289–1297 (2016).

Preventive efects for major vascular events depend on achieved LDL cholesterol regardless of lipid-lowering agent.

83. Grundy, S. M. et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 139, e1082–e1143 (2019).

84. Mach, F. et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur. Heart J. 41, 111–188 (2020).

85. Krychtiuk, K. A. et al. Acute LDL-C reduction post ACS: strike early and strike strong: from evidence to clinical practice. A clinical consensus statement of the Association for Acute CardioVascular Care (ACVC), in collaboration with the European Association of Preventive Cardiology (EAPC) and the European Society of Cardiology Working Group on Cardiovascular Pharmacotherapy. Eur. Heart J. Acute Cardiovasc. Care 11, 939–949 (2022).

86. Varenhorst, C. et al. Culprit and nonculprit recurrent ischemic events in patients with myocardial infarction: data from

SWEDEHEART (Swedish Web System for Enhancement and Development of Evidence-Based Care in Heart Disease Evaluated

According to Recommended Therapies). J. Am. Heart Assoc. 7, e007174 (2018).

87. Hess, C. N. et al. Diferential occurrence, profile, and impact of first recurrent cardiovascular events after an acute coronary

syndrome. Am. Heart J. 187, 194–203 (2017).

88. Jernberg, T. et al. Cardiovascular risk in post-myocardial infarction patients: nationwide real world data demonstrate the importance of a long-term perspective. Eur. Heart J. 36, 1163–1170 (2015).

89. Schwartz, G. G. et al. Efects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study: a randomized controlled trial. JAMA 285, 1711–1718 (2001).

High-intensity statin provided a 16% risk reduction in MACE, and event curves started diverging after only 4 weeks.

90. Cannon, C. P. et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N. Engl. J. Med. 350, 1495–1504 (2004).

91. Schwartz, G. G. et al. Transiently achieved very low LDL-cholesterol levels by statin and alirocumab after acute

coronary syndrome are associated with cardiovascular risk reduction: the ODYSSEY OUTCOMES trial. Eur. Heart J. 44,

1408–1417 (2023).

92. O’Donoghue, M. L. et al. Long-term evolocumab in patients with established atherosclerotic cardiovascular disease. Circulation 146, 1109–1119 (2022).

93. Luo, T. et al. Real-word efectiveness of early start-up and short-term use of PCSK9 inhibitor in the treatment of acute

coronary syndrome in China. Am. J. Cardiol. 207, 137–139 (2023).

94.Ford, I., Murray, H., McCowan, C. & Packard, C. J. Long-term safety and eficacy of lowering low-density lipoprotein cholesterol with statin therapy: 20-year follow-up of West of Scotland Coronary Prevention Study. Circulation 133, 1073–1080 (2016).

95. Ference, B. A., Braunwald, E. & Catapano, A. L. The LDL cumulative exposure hypothesis: evidence and practical

applications. Nat. Rev. Cardiol. 21, 701–716 (2024).

96. Araki, M. et al. Optical coherence tomography in coronary atherosclerosis assessment and intervention. Nat. Rev. Cardiol. 19, 684–703 (2022).

97. Almeida, S. O. & Budof, M. Efect of statins on atherosclerotic plaque. Trends Cardiovasc. Med. 29, 451–455 (2019).

98. Ragusa, R. et al. PCSK9 and atherosclerosis: looking beyond LDL regulation. Eur. J. Clin. Invest. 51, e13459 (2021).

99. Niedzielski, M., Broncel, M., Gorzelak-Pabis, P. & Wozniak, E. New possible pharmacological targets for statins and ezetimibe. Biomed. Pharmacother. 129, 110388 (2020).

100. Mostafa Arabi, S. et al. The efect of combination therapy with statins and ezetimibe on proinflammatory cytokines: a systematic review and meta-analysis of randomized controlled trials. Int. Immunopharmacol. 113, 109477 (2022).

专家简介

郑刚 教授

•现任泰达国际心血管病医院特聘专家

•中国高血压联盟理事,中国心力衰竭学会委员,中国老年医学会高血压分会天津工作组副组长、中国医疗保健国际交流促进会高血压分会委员。天津医学会心血管病专业委员会委员,天津医学会老年病专业委员会常委。天津市医师协会高血压专业委员会常委,天津市医师协会老年病专业委员会委员,天津市医师协会心力衰竭专业委员,天津市医师协会心血管内科医师分会双心专业委员会委员。天津市心脏学会理事、天津市心律学会第一届委员会委员,天津市房颤中心联盟常委。天津市医药学专家协会第一届心血管专业委员会委员,天津市药理学会临床心血管药理专业委员会常委。天津市中西医结合学会心血管疾病专业委员会常委

•《中华老年心脑血管病杂志》编委,《中华临床 医师杂志》(电子版)特邀审稿专家,《中华诊断学电子杂志》审稿专家,《华夏医学》杂志副主编,《中国心血管杂志》常务编委,《中国心血管病研究》杂志第四届编委,《世界临床药物》杂志编委、《医学综述》杂志会编委、《中国医药导报》杂志编委、《中国现代医生》杂志编委、《心血管外科杂志(电子版)》审稿专家

•本人在专业期刊和心血管网发表文章948篇其中第一作者759篇,参加著书11部

•获天津市2005年度“五一劳动奖章和奖状” 和 “天津市卫生行业第二届人民满意的好医生”称号

医脉通是专业的在线医生平台,“感知世界医学脉搏,助力中国临床决策”是平台的使命。医脉通旗下拥有「临床指南」「用药参考」「医学文献王」「医知源」「e研通」「e脉播」等系列产品,全面满足医学工作者临床决策、获取新知及提升科研效率等方面的需求。

来源:医脉通心内频道

相关推荐