摘要:锂硫电池(LSBs)因其卓越的理论容量和高能量密度,被公认为先进储能领域的有力竞争者。然而,其实际应用受限于多重因素:锂多硫化物扩散引发的穿梭效应、硫元素固有的低导电性,以及充放电过程中正极体积的剧烈波动。为突破这些瓶颈,本文,纳扎尔巴耶夫大学Almagul
1成果简介
锂硫电池(LSBs)因其卓越的理论容量和高能量密度,被公认为先进储能领域的有力竞争者。然而,其实际应用受限于多重因素:锂多硫化物扩散引发的穿梭效应、硫元素固有的低导电性,以及充放电过程中正极体积的剧烈波动。为突破这些瓶颈,本文,纳扎尔巴耶夫大学Almagul Mentbayeva、Zhumabay Bakenov等研究人员在《Nano Energy》期刊发表名为“Graphene-like porous carbon-titanium nitride composite as an efficient separator modifier for lithium-sulfur batteries”的论文,研究提出采用兼具极性与非极性特性的复合材料改造隔膜的创新策略。本研究以生物质为原料制备介孔石墨烯类多孔碳(GPC),并通过氮化钛(TiN)纳米颗粒进行功能化改性。系统分析了不同TiN负载量对GPC性能的影响。
采用GPC@S材料制备的正极,配合GPC-TiN-10改性隔膜的锂硫电池,显著加速了氧化还原反应速率,并有效抑制了LiPS向负极扩散。优化电池在0.2C倍率下初始放电容量达1651 mAh g−1,接近理论极限,经100次循环后仍保持880 mAh g−1容量。1C倍率循环中,容量衰减率仅为每循环0.059%。此外,在1C和2C倍率下分别测得896 mAh g⁻¹和826 mAh g⁻¹的优异倍率性能。密度泛函理论(DFT)模拟进一步证实,性能提升源于LiPSs物种与TiN修饰碳基质间的强化学亲和力,该基质提供了更高效的锚定位点。
2图文导读
图1. (a) XRD of the synthesized GPC-TiN composite; Simultaneous TGA/DTA/MS analysis of GPC-TiN composites: (b) temperature-dependent TGA plot and 3D MS scanning in 1–46 A/z range of GPC-TiN-10, (c) TGA/DTA profiles and QMID (quasi multiple ion detection) ion current curves in argon+oxygen of GPC-TiN-10, (d) GPC-TiN-20 and (e) GPC-TiN-30.
图2. (a-d) SEM images and (e) the corresponding SEM-EDS mapping of the synthesized GPC-TiN composite.
图3. (a) Low-magnification TEM image and (b) detailed view of the indicated region (red box in Fig. 3(a) of the GPC-TiN composite; (c-d) HRTEM images highlighting the lattice fringes of both GPC and TiN (the inset shows the SAED pattern, revealing characteristic diffraction rings of GPC and TiN); (e-g) FFT and IFFT images with corresponding lattice spacing profiles.
图4. XPS spectra of the GPC-TiN composite: (a) C 1 s, (b) Ti 2p and (c) N 1 s core-level spectra; (d) low-temperature N2 adsorption/desorption isotherms and (e) pore size distribution of the GPC-TiN composite.
图5. (a) Charge-discharge cycling performance of cells with GPC@S cathode and bare, GPC, GPC-TiN-10, GPC-TiN-20 and GPC-TiN-30 modified separators at 0.2 C; (b) galvanostatic charge-discharge profiles of GPC@S cathode with bare, GPC, GPC-TiN-10, GPC-TiN-20 and GPC-TiN-30 modified separators at 0.2 C at 10th cycle; (c) galvanostatic charge-discharge profile of GPC@S cathode with GPC-TiN-10 modified separators at 0.2 C; (d) charge-discharge cycling performance of cells with GPC@S, GPC-TiN-10@S, GPC-TiN-20@S and GPC-TiN-30@S cathodes and bare separator at 0.2 C; (e) CV of cell with GPC@S cathode and GPC-TiN-10 modified separator; (f) high areal sulfur loading cathode’s charge-discharge cycling performance at 0.2 C with GPC-TiN-10 modified separator; (j) rate capability and (h) long-term charge-discharge cycling performance at 1 C of the cells with GPC@S cathode and GPC-TiN-10 modified separator.
图6. (a) CV profiles of the LSB cell with bare separator, (b) CV profiles of the LSB cell with GPC-TiN-10-modified separator, (c-e) linear fits of the peak currents of the LSB cells with bare and GPC-TiN-10-modified separators; (f) CV curves of Li2S6 symmetric cell; (g) potentiostatic discharge curves at 2.05 V; (h) EIS profiles with equivalent circuit models for cells with GPC@S cathode and GPC-TiN-10-modified and bare separators.
图7. DFT-calculated binding energies of sulfur species on the carbon and carbon-TiN composite.
图8、Proposed mechanism of the redox reaction of sulfur and its intermediate products with the GPC-TiN-10-modified separator.
3小结
本研究成功开发出一种GPC-TiN复合材料作为锂硫电池的隔膜改性剂,显著提升了电池的倍率性能、循环寿命及容量保持率。系统研究了通过碳热氮化法合成的TiN纳米粒子负载量对性能的影响。在测试的多种配方中,含约8%(质量分数)TiN纳米粒子的GPC-TiN-10展现出最优异的电化学性能。采用GPC-TiN-10复合材料作为隔膜改性剂的锂硫电池,其平均充放电效率达99%,初始放电容量接近1651 mAh g⁻¹的理论值,并在0.2C倍率下经100次循环后仍保持880 mAh g⁻¹的容量。在长期充放电循环(1C,1000次)中,采用GPC-TiN-10改性隔膜的低自放电电池保持98%平均充放电效率,且容量衰减率仅为每循环0.059%。在0.1C条件下,该电池容量恢复至1062 mAh g-1,并展现出卓越的倍率性能:在0.1、0.2、0.5、1和2C电流密度下分别输出1334、1142、995、896和826 mAh g-1。
此外,采用GPC-TiN-10改性隔膜的电池在GPC@S正极实现4.1 mg cm⁻²高硫负载量时,仍保持833 mAh g⁻¹的循环容量(100次循环),相较低硫负载样品,电极级容量与电池实际容量分别提升32%和63.4%。电化学阻抗谱(EIS)和对称电池测试证实了更低的离子阻抗和增强的氧化还原动力学,这体现在锂离子扩散系数的改善上。此外,密度泛函理论(DFT)计算进一步验证了LiPSs与碳-TiN复合材料之间显著更强的相互作用,这体现在与未改性碳表面相比,结合能明显更高。GPC-TiN-10复合材料的卓越电化学特性归因于:GPC的大比表面积与介孔结构,结合分布均匀、低团聚且尺寸优化的TiN纳米颗粒,这些特性有效缓解了锂聚合物穿梭效应,催化其氧化还原反应并提升电荷传输效率。这些协同效应通过稳定硫阴极,最终实现了更长的循环寿命和高效的电荷存储。综合研究结果表明,GPC-TiN复合材料作为提升锂硫电池性能的有效策略具有广阔前景,为其在先进储能技术中的实际应用开辟了道路。
文献:
来源:材料分析与应用
来源:石墨烯联盟