图像的离散小波分解(不同种类噪声,Python)

360影视 2025-01-11 12:29 2

摘要:import matplotlib.image as mpimgimport matplotlib.pyplot as pltimport numpy as npimport sysimport osimport cv2from skimage.util im

import matplotlib.image as mpimgimport matplotlib.pyplot as pltimport numpy as npimport sysimport osimport cv2from skimage.util import random_noisesys.path.append('../')from Wavelet_2D import Wavelet_2DSAVE_OUNTPUTS = Falseif SAVE_OUNTPUTS:OUTPUT_DIR = './Outputs'OUTPUT_FORMAT = '.pdf'if not os.path.isdir(OUTPUT_DIR):os.mkdir(OUTPUT_DIR)plt.rc('text', usetex=True)plt.rc('font', family='serif')image = mpimg.imread('IMG_20210109_014553_621.png')image = image[:, :, :3]if image.dtype != np.uint8:tmp1 = np.zeros_like(image, dtype=np.uint8)for j in range(3):tmp1[:, :, j] = 255 * (image[:, :, j] - np.min(image[:, :, j])) / (np.max(image[:, :, j]) - np.min(image[:, :, j]))image = tmp1image = cv2.resize(image, (256, 256))image_sp = 255*random_noise(image, mode='s&p', amount=0.1)image_gs = 255*random_noise(image, mode='gaussian', mean=0, var=0.05)plt.figure(figsize=(10,5))plt.subplot(1, 3, 1)plt.imshow(image)plt.title('Original Image', fontsize=15)plt.xticks(); plt.yticks()plt.subplot(1, 3, 2)plt.imshow(image_sp.astype(np.uint8))plt.title('Salt\&Pepper Noise', fontsize=15)plt.xticks(); plt.yticks()plt.subplot(1, 3, 3)plt.imshow(image_gs.astype(np.uint8))plt.title('Gaussian Noise', fontsize=15)plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_Image'+OUTPUT_FORMAT, bbox_inches='tight')plt.showSS_haar, SD_haar, DS_haar, DD_haar = Wavelet_2D(image,'Haar', 5)SS_haar_sp, SD_haar_sp, DS_haar_sp, DD_haar_sp = Wavelet_2D(image_sp,'Haar', 5)SS_haar_gs, SD_haar_gs, DS_haar_gs, DD_haar_gs = Wavelet_2D(image_gs,'Haar', 5)Processing Haar Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!Processing Haar Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!Processing Haar Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!SS_db4, SD_db4, DS_db4, DD_db4 = Wavelet_2D(image,'db4', 5)SS_db4_sp, SD_db4_sp, DS_db4_sp, DD_db4_sp = Wavelet_2D(image_sp,'db4', 5)SS_db4_gs, SD_db4_gs, DS_db4_gs, DD_db4_gs = Wavelet_2D(image_gs,'db4', 5)Processing Daubechies4 Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!Processing Daubechies4 Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!Processing Daubechies4 Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!SS_db6, SD_db6, DS_db6, DD_db6 = Wavelet_2D(image,'db6', 5)SS_db6_sp, SD_db6_sp, DS_db6_sp, DD_db6_sp = Wavelet_2D(image_sp,'db6', 5)SS_db6_gs, SD_db6_gs, DS_db6_gs, DD_db6_gs = Wavelet_2D(image_gs,'db6', 5)Processing Daubechies6 Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!Processing Daubechies6 Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!Processing Daubechies6 Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!SS_mh, SD_mh, DS_mh, DD_mh = Wavelet_2D(image,'mexicanHat', 5)SS_mh_sp, SD_mh_sp, DS_mh_sp, DD_mh_sp = Wavelet_2D(image_sp,'mexicanhat', 5)SS_mh_gs, SD_mh_gs, DS_mh_gs, DD_mh_gs = Wavelet_2D(image_gs,'mexicanhat', 5)Processing Mexican Hat Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!Processing Mexican Hat Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!Processing Mexican Hat Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!SS_sym2, SD_sym2, DS_sym2, DD_sym2 = Wavelet_2D(image,'sym2', 5)SS_sym2_sp, SD_sym2_sp, DS_sym2_sp, DD_sym2_sp = Wavelet_2D(image_sp,'sym2', 5)SS_sym2_gs, SD_sym2_gs, DS_sym2_gs, DD_sym2_gs = Wavelet_2D(image_gs,'sym2', 5)Processing Symlet2 Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!Processing Symlet2 Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!Processing Symlet2 Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!import matplotlib.pyplot as pltplt.rc('text', usetex=True)plt.rc('font', family='serif')plt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image)plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Haar Wavelet - Image Without Noise', fontsize=20)for i in range(len(SS_haar)):tmp1 = SS_haar[i].astype(np.uint8)tmp2 = SD_haar[i].astype(np.uint8)tmp3 = DS_haar[i].astype(np.uint8)tmp4 = DD_haar[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_HaarWavelet_WithoutNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showplt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image_sp.astype(np.uint8))plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Haar Wavelet - Image With S\&P Noise', fontsize=20)for i in range(len(SS_haar_sp)):tmp1 = SS_haar_sp[i].astype(np.uint8)tmp2 = SD_haar_sp[i].astype(np.uint8)tmp3 = DS_haar_sp[i].astype(np.uint8)tmp4 = DD_haar_sp[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_HaarWavelet_SPNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showplt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image_gs.astype(np.uint8))plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Haar Wavelet - Image With Gaussian Noise', fontsize=20)for i in range(len(SS_haar_gs)):tmp1 = SS_haar_gs[i].astype(np.uint8)tmp2 = SD_haar_gs[i].astype(np.uint8)tmp3 = DS_haar_gs[i].astype(np.uint8)tmp4 = DD_haar_gs[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_HaarWavelet_GaussianNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showimport matplotlib.pyplot as pltplt.rc('text', usetex=True)plt.rc('font', family='serif')plt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image)plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Daubechies4 Wavelet - Image Without Noise', fontsize=20)for i in range(len(SS_db4)):tmp1 = SS_db4[i].astype(np.uint8)tmp2 = SD_db4[i].astype(np.uint8)tmp3 = DS_db4[i].astype(np.uint8)tmp4 = DD_db4[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_Daubechies4Wavelet_WithoutNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showplt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image_sp.astype(np.uint8))plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Daubechies4 Wavelet - Image With S\&P Noise', fontsize=20)for i in range(len(SS_db4_sp)):tmp1 = SS_db4_sp[i].astype(np.uint8)tmp2 = SD_db4_sp[i].astype(np.uint8)tmp3 = DS_db4_sp[i].astype(np.uint8)tmp4 = DD_db4_sp[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_Daubechies4Wavelet_SPNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showplt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image_gs.astype(np.uint8))plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Daubechies4 Wavelet - Image With Gaussian Noise', fontsize=20)for i in range(len(SS_db4_gs)):tmp1 = SS_db4_gs[i].astype(np.uint8)tmp2 = SD_db4_gs[i].astype(np.uint8)tmp3 = DS_db4_gs[i].astype(np.uint8)tmp4 = DD_db4_gs[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_Daubechies4Wavelet_GaussianNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showimport matplotlib.pyplot as pltplt.rc('text', usetex=True)plt.rc('font', family='serif')plt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image)plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Daubechies6 Wavelet - Image Without Noise', fontsize=20)for i in range(len(SS_db6)):tmp1 = SS_db6[i].astype(np.uint8)tmp2 = SD_db6[i].astype(np.uint8)tmp3 = DS_db6[i].astype(np.uint8)tmp4 = DD_db6[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_Daubechies6Wavelet_WithoutNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showplt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image_sp.astype(np.uint8))plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Daubechies6 Wavelet - Image With S\&P Noise', fontsize=20)for i in range(len(SS_db6_sp)):tmp1 = SS_db6_sp[i].astype(np.uint8)tmp2 = SD_db6_sp[i].astype(np.uint8)tmp3 = DS_db6_sp[i].astype(np.uint8)tmp4 = DD_db6_sp[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_Daubechies6Wavelet_SPNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showplt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image_gs.astype(np.uint8))plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Daubechies6 Wavelet - Image With Gaussian Noise', fontsize=20)for i in range(len(SS_db6_gs)):tmp1 = SS_db6_gs[i].astype(np.uint8)tmp2 = SD_db6_gs[i].astype(np.uint8)tmp3 = DS_db6_gs[i].astype(np.uint8)tmp4 = DD_db6_gs[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_Daubechies6Wavelet_GaussianNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showimport matplotlib.pyplot as pltplt.rc('text', usetex=True)plt.rc('font', family='serif')plt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image)plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Mexican Hat Wavelet - Image Without Noise', fontsize=20)for i in range(len(SS_mh)):tmp1 = SS_mh[i].astype(np.uint8)tmp2 = SD_mh[i].astype(np.uint8)tmp3 = DS_mh[i].astype(np.uint8)tmp4 = DD_mh[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_MexicanHatWavelet_WithoutNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showplt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image_sp.astype(np.uint8))plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Mexican Hat Wavelet - Image With S\&P Noise', fontsize=20)for i in range(len(SS_mh_sp)):tmp1 = SS_mh_sp[i].astype(np.uint8)tmp2 = SD_mh_sp[i].astype(np.uint8)tmp3 = DS_mh_sp[i].astype(np.uint8)tmp4 = DD_mh_sp[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_MexicanHatWavelet_SPNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showplt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image_gs.astype(np.uint8))plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Mexican Hat Wavelet - Image With Gaussian Noise', fontsize=20)for i in range(len(SS_mh_gs)):tmp1 = SS_mh_gs[i].astype(np.uint8)tmp2 = SD_mh_gs[i].astype(np.uint8)tmp3 = DS_mh_gs[i].astype(np.uint8)tmp4 = DD_mh_gs[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_MexicanHatWavelet_GaussianNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showimport matplotlib.pyplot as pltplt.rc('text', usetex=True)plt.rc('font', family='serif')plt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image)plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Symlet2 Wavelet - Image Without Noise', fontsize=20)for i in range(len(SS_sym2)):tmp1 = SS_sym2[i].astype(np.uint8)tmp2 = SD_sym2[i].astype(np.uint8)tmp3 = DS_sym2[i].astype(np.uint8)tmp4 = DD_sym2[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_Symlet2Wavelet_WithoutNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showplt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image_sp.astype(np.uint8))plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Symlet2 Wavelet - Image With S\&P Noise', fontsize=20)for i in range(len(SS_sym2_sp)):tmp1 = SS_sym2_sp[i].astype(np.uint8)tmp2 = SD_sym2_sp[i].astype(np.uint8)tmp3 = DS_sym2_sp[i].astype(np.uint8)tmp4 = DD_sym2_sp[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_Symlet2Wavelet_SPNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showplt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image_gs.astype(np.uint8))plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Symlet2 - Image With Gaussian Noise', fontsize=20)for i in range(len(SS_sym2_gs)):tmp1 = SS_sym2_gs[i].astype(np.uint8)tmp2 = SD_sym2_gs[i].astype(np.uint8)tmp3 = DS_sym2_gs[i].astype(np.uint8)tmp4 = DD_sym2_gs[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_Symlet2Wavelet_GaussianNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.show

知乎学术咨询:

https://www.zhihu.com/consult/people/792359672131756032?isMe=1

担任《Mechanical System and Signal Processing》《中国电机工程学报》等期刊审稿专家,擅长领域:信号滤波/降噪,机器学习/深度学习,时间序列预分析/预测,设备故障诊断/缺陷检测/异常检测。

分割线分割线

基于改进高斯-拉普拉斯滤波器的微震信号平滑降噪方法(MATLAB)

完整数据可通过知乎学术咨询获得

非平稳信号的凸一维全变差降噪方法(MATLAB)

算法可迁移至金融时间序列,地震/微震信号,机械振动信号,声发射信号,电压/电流信号,语音信号,声信号,生理信号(ECG,EEG,EMG)等信号。

完整数据可通过知乎学术咨询获得

基于广义交叉验证阈值的微震信号降噪方法(MATLAB)

算法可迁移至金融时间序列,地震/微震信号,机械振动信号,声发射信号,电压/电流信号,语音信号,声信号,生理信号(ECG,EEG,EMG)等信号。

完整数据可通过知乎学术咨询获得

集合高阶统计量和小波块阈值的非平稳信号降噪方法-以地震信号为例(MATLAB)

完整数据可通过知乎学术咨询获得

一种新的类谱峭度算法的旋转机械故障诊断模型(Python)

完整数据可通过知乎学术咨询获得

采用8种方法对一维信号进行降噪(Python)

NS: noisy signalS: original siganlmean filter: ws = window sizemedian filter:average filter: ns = number of noisy signal(different)bandpass filter: l = low cut-off frequency, h = high ...threshold filter: r = ratio(max abs(fft) / min ...)wavelet filter: a = thresholdstd filter:NN: neural network

来源:小火科技论

相关推荐