import matplotlib.image as mpimgimport matplotlib.pyplot as pltimport numpy as npimport sysimport osimport cv2from skimage.util import random_noisesys.path.append('../')from Wavelet_2D import Wavelet_2DSAVE_OUNTPUTS = Falseif SAVE_OUNTPUTS:OUTPUT_DIR = './Outputs'OUTPUT_FORMAT = '.pdf'if not os.path.isdir(OUTPUT_DIR):os.mkdir(OUTPUT_DIR)plt.rc('text', usetex=True)plt.rc('font', family='serif')image = mpimg.imread('IMG_20210109_014553_621.png')image = image[:, :, :3]if image.dtype != np.uint8:tmp1 = np.zeros_like(image, dtype=np.uint8)for j in range(3):tmp1[:, :, j] = 255 * (image[:, :, j] - np.min(image[:, :, j])) / (np.max(image[:, :, j]) - np.min(image[:, :, j]))image = tmp1image = cv2.resize(image, (256, 256))image_sp = 255*random_noise(image, mode='s&p', amount=0.1)image_gs = 255*random_noise(image, mode='gaussian', mean=0, var=0.05)plt.figure(figsize=(10,5))plt.subplot(1, 3, 1)plt.imshow(image)plt.title('Original Image', fontsize=15)plt.xticks(); plt.yticks()plt.subplot(1, 3, 2)plt.imshow(image_sp.astype(np.uint8))plt.title('Salt\&Pepper Noise', fontsize=15)plt.xticks(); plt.yticks()plt.subplot(1, 3, 3)plt.imshow(image_gs.astype(np.uint8))plt.title('Gaussian Noise', fontsize=15)plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_Image'+OUTPUT_FORMAT, bbox_inches='tight')plt.showSS_haar, SD_haar, DS_haar, DD_haar = Wavelet_2D(image,'Haar', 5)SS_haar_sp, SD_haar_sp, DS_haar_sp, DD_haar_sp = Wavelet_2D(image_sp,'Haar', 5)SS_haar_gs, SD_haar_gs, DS_haar_gs, DD_haar_gs = Wavelet_2D(image_gs,'Haar', 5)Processing Haar Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!Processing Haar Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!Processing Haar Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!SS_db4, SD_db4, DS_db4, DD_db4 = Wavelet_2D(image,'db4', 5)SS_db4_sp, SD_db4_sp, DS_db4_sp, DD_db4_sp = Wavelet_2D(image_sp,'db4', 5)SS_db4_gs, SD_db4_gs, DS_db4_gs, DD_db4_gs = Wavelet_2D(image_gs,'db4', 5)Processing Daubechies4 Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!Processing Daubechies4 Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!Processing Daubechies4 Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!SS_db6, SD_db6, DS_db6, DD_db6 = Wavelet_2D(image,'db6', 5)SS_db6_sp, SD_db6_sp, DS_db6_sp, DD_db6_sp = Wavelet_2D(image_sp,'db6', 5)SS_db6_gs, SD_db6_gs, DS_db6_gs, DD_db6_gs = Wavelet_2D(image_gs,'db6', 5)Processing Daubechies6 Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!Processing Daubechies6 Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!Processing Daubechies6 Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!SS_mh, SD_mh, DS_mh, DD_mh = Wavelet_2D(image,'mexicanHat', 5)SS_mh_sp, SD_mh_sp, DS_mh_sp, DD_mh_sp = Wavelet_2D(image_sp,'mexicanhat', 5)SS_mh_gs, SD_mh_gs, DS_mh_gs, DD_mh_gs = Wavelet_2D(image_gs,'mexicanhat', 5)Processing Mexican Hat Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!Processing Mexican Hat Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!Processing Mexican Hat Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!SS_sym2, SD_sym2, DS_sym2, DD_sym2 = Wavelet_2D(image,'sym2', 5)SS_sym2_sp, SD_sym2_sp, DS_sym2_sp, DD_sym2_sp = Wavelet_2D(image_sp,'sym2', 5)SS_sym2_gs, SD_sym2_gs, DS_sym2_gs, DD_sym2_gs = Wavelet_2D(image_gs,'sym2', 5)Processing Symlet2 Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!Processing Symlet2 Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!Processing Symlet2 Wavelet Decomposition ...Decomposition Level 1 Completed!Decomposition Level 2 Completed!Decomposition Level 3 Completed!Decomposition Level 4 Completed!Decomposition Level 5 Completed!import matplotlib.pyplot as pltplt.rc('text', usetex=True)plt.rc('font', family='serif')plt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image)plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Haar Wavelet - Image Without Noise', fontsize=20)for i in range(len(SS_haar)):tmp1 = SS_haar[i].astype(np.uint8)tmp2 = SD_haar[i].astype(np.uint8)tmp3 = DS_haar[i].astype(np.uint8)tmp4 = DD_haar[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_HaarWavelet_WithoutNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showplt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image_sp.astype(np.uint8))plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Haar Wavelet - Image With S\&P Noise', fontsize=20)for i in range(len(SS_haar_sp)):tmp1 = SS_haar_sp[i].astype(np.uint8)tmp2 = SD_haar_sp[i].astype(np.uint8)tmp3 = DS_haar_sp[i].astype(np.uint8)tmp4 = DD_haar_sp[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_HaarWavelet_SPNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showplt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image_gs.astype(np.uint8))plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Haar Wavelet - Image With Gaussian Noise', fontsize=20)for i in range(len(SS_haar_gs)):tmp1 = SS_haar_gs[i].astype(np.uint8)tmp2 = SD_haar_gs[i].astype(np.uint8)tmp3 = DS_haar_gs[i].astype(np.uint8)tmp4 = DD_haar_gs[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_HaarWavelet_GaussianNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showimport matplotlib.pyplot as pltplt.rc('text', usetex=True)plt.rc('font', family='serif')plt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image)plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Daubechies4 Wavelet - Image Without Noise', fontsize=20)for i in range(len(SS_db4)):tmp1 = SS_db4[i].astype(np.uint8)tmp2 = SD_db4[i].astype(np.uint8)tmp3 = DS_db4[i].astype(np.uint8)tmp4 = DD_db4[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_Daubechies4Wavelet_WithoutNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showplt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image_sp.astype(np.uint8))plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Daubechies4 Wavelet - Image With S\&P Noise', fontsize=20)for i in range(len(SS_db4_sp)):tmp1 = SS_db4_sp[i].astype(np.uint8)tmp2 = SD_db4_sp[i].astype(np.uint8)tmp3 = DS_db4_sp[i].astype(np.uint8)tmp4 = DD_db4_sp[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_Daubechies4Wavelet_SPNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showplt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image_gs.astype(np.uint8))plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Daubechies4 Wavelet - Image With Gaussian Noise', fontsize=20)for i in range(len(SS_db4_gs)):tmp1 = SS_db4_gs[i].astype(np.uint8)tmp2 = SD_db4_gs[i].astype(np.uint8)tmp3 = DS_db4_gs[i].astype(np.uint8)tmp4 = DD_db4_gs[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_Daubechies4Wavelet_GaussianNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showimport matplotlib.pyplot as pltplt.rc('text', usetex=True)plt.rc('font', family='serif')plt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image)plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Daubechies6 Wavelet - Image Without Noise', fontsize=20)for i in range(len(SS_db6)):tmp1 = SS_db6[i].astype(np.uint8)tmp2 = SD_db6[i].astype(np.uint8)tmp3 = DS_db6[i].astype(np.uint8)tmp4 = DD_db6[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_Daubechies6Wavelet_WithoutNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showplt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image_sp.astype(np.uint8))plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Daubechies6 Wavelet - Image With S\&P Noise', fontsize=20)for i in range(len(SS_db6_sp)):tmp1 = SS_db6_sp[i].astype(np.uint8)tmp2 = SD_db6_sp[i].astype(np.uint8)tmp3 = DS_db6_sp[i].astype(np.uint8)tmp4 = DD_db6_sp[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_Daubechies6Wavelet_SPNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showplt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image_gs.astype(np.uint8))plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Daubechies6 Wavelet - Image With Gaussian Noise', fontsize=20)for i in range(len(SS_db6_gs)):tmp1 = SS_db6_gs[i].astype(np.uint8)tmp2 = SD_db6_gs[i].astype(np.uint8)tmp3 = DS_db6_gs[i].astype(np.uint8)tmp4 = DD_db6_gs[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_Daubechies6Wavelet_GaussianNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showimport matplotlib.pyplot as pltplt.rc('text', usetex=True)plt.rc('font', family='serif')plt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image)plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Mexican Hat Wavelet - Image Without Noise', fontsize=20)for i in range(len(SS_mh)):tmp1 = SS_mh[i].astype(np.uint8)tmp2 = SD_mh[i].astype(np.uint8)tmp3 = DS_mh[i].astype(np.uint8)tmp4 = DD_mh[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_MexicanHatWavelet_WithoutNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showplt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image_sp.astype(np.uint8))plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Mexican Hat Wavelet - Image With S\&P Noise', fontsize=20)for i in range(len(SS_mh_sp)):tmp1 = SS_mh_sp[i].astype(np.uint8)tmp2 = SD_mh_sp[i].astype(np.uint8)tmp3 = DS_mh_sp[i].astype(np.uint8)tmp4 = DD_mh_sp[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_MexicanHatWavelet_SPNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showplt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image_gs.astype(np.uint8))plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Mexican Hat Wavelet - Image With Gaussian Noise', fontsize=20)for i in range(len(SS_mh_gs)):tmp1 = SS_mh_gs[i].astype(np.uint8)tmp2 = SD_mh_gs[i].astype(np.uint8)tmp3 = DS_mh_gs[i].astype(np.uint8)tmp4 = DD_mh_gs[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_MexicanHatWavelet_GaussianNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showimport matplotlib.pyplot as pltplt.rc('text', usetex=True)plt.rc('font', family='serif')plt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image)plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Symlet2 Wavelet - Image Without Noise', fontsize=20)for i in range(len(SS_sym2)):tmp1 = SS_sym2[i].astype(np.uint8)tmp2 = SD_sym2[i].astype(np.uint8)tmp3 = DS_sym2[i].astype(np.uint8)tmp4 = DD_sym2[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_Symlet2Wavelet_WithoutNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showplt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image_sp.astype(np.uint8))plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Symlet2 Wavelet - Image With S\&P Noise', fontsize=20)for i in range(len(SS_sym2_sp)):tmp1 = SS_sym2_sp[i].astype(np.uint8)tmp2 = SD_sym2_sp[i].astype(np.uint8)tmp3 = DS_sym2_sp[i].astype(np.uint8)tmp4 = DD_sym2_sp[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_Symlet2Wavelet_SPNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.showplt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)plt.imshow(image_gs.astype(np.uint8))plt.title('Input')plt.xticks(); plt.yticks()plt.suptitle('Symlet2 - Image With Gaussian Noise', fontsize=20)for i in range(len(SS_sym2_gs)):tmp1 = SS_sym2_gs[i].astype(np.uint8)tmp2 = SD_sym2_gs[i].astype(np.uint8)tmp3 = DS_sym2_gs[i].astype(np.uint8)tmp4 = DD_sym2_gs[i].astype(np.uint8)tmp11 = np.vstack((tmp1, tmp2))tmp22 = np.vstack((tmp3, tmp4))tmp = np.hstack((tmp11, tmp22))plt.subplot(2, 3, i+2)plt.title(f'Decomposition Level: {i+1}')plt.imshow(tmp.astype(np.uint8))plt.xticks(); plt.yticks()plt.tight_layoutif SAVE_OUNTPUTS:plt.savefig(OUTPUT_DIR+'/2D_Symlet2Wavelet_GaussianNoise'+OUTPUT_FORMAT, bbox_inches='tight')plt.show摘要:import matplotlib.image as mpimgimport matplotlib.pyplot as pltimport numpy as npimport sysimport osimport cv2from skimage.util im
知乎学术咨询:
https://www.zhihu.com/consult/people/792359672131756032?isMe=1担任《Mechanical System and Signal Processing》《中国电机工程学报》等期刊审稿专家,擅长领域:信号滤波/降噪,机器学习/深度学习,时间序列预分析/预测,设备故障诊断/缺陷检测/异常检测。
分割线分割线
基于改进高斯-拉普拉斯滤波器的微震信号平滑降噪方法(MATLAB)
完整数据可通过知乎学术咨询获得
非平稳信号的凸一维全变差降噪方法(MATLAB)
算法可迁移至金融时间序列,地震/微震信号,机械振动信号,声发射信号,电压/电流信号,语音信号,声信号,生理信号(ECG,EEG,EMG)等信号。
完整数据可通过知乎学术咨询获得
基于广义交叉验证阈值的微震信号降噪方法(MATLAB)
算法可迁移至金融时间序列,地震/微震信号,机械振动信号,声发射信号,电压/电流信号,语音信号,声信号,生理信号(ECG,EEG,EMG)等信号。
完整数据可通过知乎学术咨询获得
集合高阶统计量和小波块阈值的非平稳信号降噪方法-以地震信号为例(MATLAB)
完整数据可通过知乎学术咨询获得
一种新的类谱峭度算法的旋转机械故障诊断模型(Python)
完整数据可通过知乎学术咨询获得
采用8种方法对一维信号进行降噪(Python)
NS: noisy signalS: original siganlmean filter: ws = window sizemedian filter:average filter: ns = number of noisy signal(different)bandpass filter: l = low cut-off frequency, h = high ...threshold filter: r = ratio(max abs(fft) / min ...)wavelet filter: a = thresholdstd filter:NN: neural network来源:小火科技论
免责声明:本站系转载,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本站联系,我们将在第一时间删除内容!