摘要:研究固体的物理性质、微观结构、固体中各种粒子运动形态和规律及它们相互关系的学科。物理学的重要分支,涉及力学、热学、声学、电学、磁学和光学等各方面的内容。
固体物理学solid state physics
研究固体的物理性质、微观结构、固体中各种粒子运动形态和规律及它们相互关系的学科。物理学的重要分支,涉及力学、热学、声学、电学、磁学和光学等各方面的内容。
固体的应用极为广泛,各个时代都有自己特色的固体材料、器件和有关制品。现代固体物理形成于20世纪前40年代,它是先进的微电子、光电子、光子等各项技术和材料科学的基础,其重要性是显然的。
1. 固体分类
固体是由大量原子(离子或分子)凝聚成相对稳定而紧密的、有自持形状的、能承受切应力的物体。按原子排列的特点,固体可分为晶体、准晶体和非晶体三大类。
组成晶体的粒子,在三维空间的排列形成晶格,具有周期性及与周期性相容的空间取向有序性。所有晶体可分成三斜、单斜、正交、四方、三角、六角和立方七个晶系。晶体的对称性,可由32个点群和230个空间群描述。
1984年D.谢虚曼等发现准晶体,它的组成粒子在空间的排列形成准晶格,没有周期性而有区别于晶体的空间取向序。
非晶固体又称无定形固体或玻璃固体,其中的粒子排列是无序的。但在1~2个原子间距范围,由于化学键的作用,在总体无序结构中存在短程有序。
用X射线、电子束、中子束衍射技术等可鉴别和测定这三类固体的结构。
2. 固体结合
按相邻粒子间化学键的特点,固体有五类结合,即金属键合、离子键合、共价键合、分子键合及氢键合。前三种键合是强化学键,平均每个原子的结合能为几个电子伏;后两种是弱化学键,结合能约十分之几电子伏。
金属、合金及准晶体都是金属键合。这些固体所有原子的价电子都脱离其原子,形成能在整个固体中自由运动的电子气。失去价电子的所有原子实埋在电子气中,形成紧密并有周期性的晶格或无周期性的准晶格。
离子晶体靠其中正、负离子之间的静电相互作用结合成晶体。碳原子之间以共价键方式结合成金刚石。砷化镓晶体也是共价晶体,但含有部分离子键合,这类材料称为极性晶体。分子是电中性的,但由于其正、负中心不重合而有电偶极矩。分子靠它们电偶极矩间的范德瓦耳斯力而结合成晶体。氢原子是特殊的原子,只有一个价电子,原子实就是氢核,它可同时与两个负电性强的原子结合成非对称氢键,在水和冰及生命物质大分子RNA、DNA中氢键起重要作用。
3. 固体中的电子态
1928年F.布洛赫和1930年L.-N.布里渊等,在研究晶体周期性势场中单电子的量子态以及单电子在外电场的行为时,奠定了能带理论基础。
当大量原子凝聚成晶体时,原子中的电子能级被展宽成能带。能带宽度决定于相邻原子中电子态的交叠程度,内层电子受原子核束缚紧,与近邻相应电子态交叠,能带很窄;外层价电子受原子实的束缚弱,电子态相互交叠,形成的能带(价带)的宽度按大。相邻两个能带之间不存在晶体电子态的能量范围,称为禁带或能隙。在能带里电子态是受周期场调制的平面波,称为布洛赫波。
任一能带被电子填满时称为满带,满带不能导电。原子满壳层对应的能带是满带。部分状态被电子占据的能带称为导带,导带电子可参与导电。绝缘体是这样的晶体,其价带是满带,隔一个宽度>3电子伏的禁带才有一个空无电子的能带。半导体的能带与绝缘体相似,只是价带之上的禁带较小。如硅的=1.12电子伏(室温),硅价带有部分电子受热激发跳到之上使本来空的能带变成导带;同时在价带留下空状态,也可参与导电,其行为等效于每个空状态作为一个带正电荷的自由粒子,称为空穴。
金属是能量最高的能带未填满的晶体。能带中每个电子态至多容纳自旋相反的两个电子,电子从能量最低的状态填起,直到能量为最高的占据,称为费米能量,相应的能级称为费米能级。金属的约为几个电子伏。20世纪60年代W.科恩等发展密度泛函理论,使能带理论基础更加坚实。计算机的发展和计算方法的进步,使能带计算结果更加精确。
非晶体中原子排列星无序结构,电子在无序势场中运动。1958年P.W.安德森论证了当无序足够强时,所有电子态都是定域态。定域态中电子对固体导电没有贡献。与之对照,平面波或布洛赫波代表的电子态称为扩展态。在这基础上N.F.莫脱提出非晶半导体的能带模型:在价带顶部和导带底部分别存在一个迁移率边和将各自能带的定域态和扩展态分开。非晶半导体的导电行为取决于其费米能级落在定域态还是扩展态。
准晶格中各个原子的配位数(即最近邻原子数)不是同一整数,而是各异的整数;各原子与最近邻原子间距也不是同一长度,因而电子态间交叠也不同。准晶体的电子态有扩展态、定域态和介于这两者之间的临界态。
4. 半导体
导电能力远远小于金属,但对环境温度、掺入杂质、光照、应力等因素很敏感。1947年W.B.肖克莱、J.巴丁和W.H.布拉坦发明锗晶体管,1960年硅晶体管平面工艺问世,1962年出现集成电路(IC),1968年起生产大规模集成电路。此后,半导体器件集成度以每18个月增加一倍的速度发展,现今在单个硅芯片上可集成晶体管达十亿个,大尺寸硅单晶是信息产业的主要材料。
硅是4价元素,凝聚成共价晶体。掺入5价的磷或砷,形成电子导电的N型硅。若掺入3价的硼或铝,硅的价带具有带正电荷粒子的导电行为,称之为P型硅。半导体的P型和N型区会接处是一个PN结。当P区相对对N区处于正电位(即正向电压)时,通过PN结的电流很大;而电压反向时电流很小。因此,PN结具有整流性质。晶体管则是两个背靠背的PN结构成的PNP或NPN三极管,具有放大电流信号的功能。1975年W.E.斯皮尔等解决了非晶硅也能掺杂成为N型或P型的技术。1976年就有非晶硅太阳能电池问世,其转换效率已达13%~14%。
Ⅲ-V族和Ⅱ-M族极性半导体的大多数都是具有直接能隙的材料,非常有利于导带电子与价带空穴直接复合,发射出相应频率的光,这些半导体的PN结可作为发光二极管,光的颜色取决于半导体材料。经特殊设计的砷化镓PN结或砷化镓-铝镓砷异质结,在特定工作条件下会产生受激辐射和光放大,发射出具有相干性的确定频率的光,这就是半导体激光。1969年江崎等提出半导体超晶格的新概念,此后超晶格和量子阱成为半导体物理研究和光电器件开发的重要领域。半导体亦是光通信、光电子技术、光子技术的重要支柱。
硅微电子技术正向它的“极限”发展,当器件中线条宽度缩小到纳米尺度,便与电子的德布罗意波长相当,这时量子效应凸现。依照电子受限制的条件,半导体纳米器件大体有量子点器件、共振隧穿器件和单电子器件三类。
20世纪60年代起,在金属-氧化物-硅场效应管(MOSFET) 的沟道中及异质结量子阱中二维电子气成为热点研究领域。K.von 克利青于1980年发现霍耳电阻:
呈平台,n为整数,称为整数量子霍耳效应,已被国际计量机构选作电阻标准。1982年崔琦,H.L.施特默等发现新的霍耳电阻平台,n为奇分母有理数,称为分数量子霍耳效应。R.B.劳克林于1983年对该效应给出理论阐明。
5. 介电晶体
以极化方式响应外加电场的非金属的晶体。以单位体积中电偶极矩之和即极化强度P作为量度。当电场E远小于原子内部电场时,称为晶体的极化率,为真空介电常数(电容率)。而晶体的介电常数。
铁电体是特殊的介电晶体,在没有外电场时晶体内具有自发极化。、及都是铁电体。前两者的铁电性来源于晶体中正、负离子在一定温度发生位移引起结构相变,伴生自发极化。KDP的铁电性来源于晶体中氢键从无序态变为有序态时伴生的自发极化。铁电体又是压电晶体,但压电晶体诸如石英就不是铁电体。
按照麦克斯韦电磁场理论,固体的光频ω的介电函数ε(ω)正比于固体折射率n(ω)的平方。考虑到固体同时有色散和光吸收,ε(ω)应写成复函数,其虚部与光吸收关联。能带理论用于计算固体的光吸收,可给出ε(ω)与各种电子光跃迁过程之间的关系。
激光的光电场非常强,甚至可超过了原子肉部的电场,这时必须考虑非线性极化现象,即极化强度P还含和项。具有非线性极化的晶体称为非线性光学晶体。(LBO)晶体就是中国学者研制开发的非线性光学晶体。非线性光学效应使无线电波范围常用的倍频、参量放大等功能可移植到光波领域,构成光通信技术的必要基础。
6. 固体磁性
指固体具有的来源于电子自旋和轨道磁矩的一种物性。抗磁性是物质的通性,来源于电子轨道因外磁场而发生变化所产生的与磁场反向的微弱磁矩。
金属的磁性比较复杂,除上述抗磁性外,还有源于金属电子气自旋磁矩的总和趋于同磁场平行的顺磁性。非金属顺磁体的磁性来源于固体中原子或离子固有磁矩道于与磁场的同向排列。
原子核亦有磁矩,核磁共振已成为探索物质结构的有力工具。核磁共振成像技术则是当今疾病诊断的重要手段。
铁磁性和亚铁磁性是两类磁有序结构固体具有的强磁性。温度在居里点以上固体呈顺磁性,在居里点时发生相变而呈铁磁性或亚铁磁性。
1907年P.-E.外斯用分子场唯象理论解释铁磁性。1926年实验确定过渡金属铁磁性来源于3d壳层的电子自旋磁矩。1928年W.K.海森伯提出铁磁体的分子场来源于相邻原子的电子自旋平行排列可使系统能量降低的交换作用。1934年E.C.斯通纳提出巡游电子模型,可解释一部分实验规律。20世纪50年代M.A.茹德曼、C.基泰耳、T.糟谷和K.芳田奎提出固体中两个相邻局域磁矩通过传导电子气为媒介传递的间接交换作用,称为RKKY互作用,其特点是互作用能随两磁矩间距离呈振荡型衰减。
亚铁磁性是由于一些化合物晶体中含有两种磁性离子,它们有不相等的电子自旋磁矩,且按磁矩反平行方式排列形成两个磁子晶格。铁氧体就是典型例子,在高频和微波领域有重要应用。反铁磁体和亚铁磁体相似,但其两个磁子晶格的离子磁矩大小相等而反平行排列。反铁磁体的温度高于奈耳点,其反铁磁性消失,变为顺磁性。铜氧化物高温超导体未掺杂的母材具有反铁磁性。
非晶磁性材料和各种磁记录材料发展迅猛,特别是磁光记录材料将应用延伸到光波领域。1988年在多层磁薄膜中发现巨磁电阻效应,后来又发现具有超巨磁电阻效应的新磁性晶体,为发展磁电子学提供了基础。
7. 超导电性
H.开默林•昂内斯于1911年发现水银在=4.2K完全失去电阻,他称此特性为超导电性,为超导转变温度。1933年W.迈斯纳等发现金属在超导态时具有完全抗磁性。后来人们又发现温度在时金属的比热发生突变。根据这些特性,建立了超导体的电磁理论和热力学。
1946年F.伦敦预言超导电性是宏观量子现象,并存在磁通量子。1961年实验测定的磁通量子。这正好符合1956年L.N.库珀提出的金属费米面上电子配对(称为库珀对)的概念。
1950年人们预言并发现依赖晶格原子质量的同位素效应。1957年J.巴丁、L.N.库珀和J.R.施里弗成功提出以电子-声子相互作用引起费米面附近电子配对为基础的超导微观理论,称为BCS理论。
1960年I.加埃沃发现超导体的单电子隧道效应,并可用它测定超导态能隙2Δ随温度T的变化规律,支持了BCS理论。1950~1959年,V.L.京茨堡、L.D.朗道、A.A.阿布里考索夫和L.P.戈科夫发展了一种用序参量描述超导态的理论,称为ГЛАГ(GLAG) 理论。
1962年B.D.约瑟夫森预言库珀对能够无阻地穿过夹在两超导体S之间极薄绝缘层I形成的S-I-S结构的约瑟夫森结。在不加外电场时,这是直流约瑟夫森效应。若结的两端加电压V,则通过结的是频率ν=2e/hV的超导交变电流。这是交流约瑟夫森效应,并被国际计量机构选作电压标准。在约瑟夫森结的基础上,人们又开拓出超导量子干涉现象和有关器件,成为超导电子学的主流。
1986年K.A.缪勒和J.G.贝德诺尔获发现镧钡铜氧化物具有高于30K的超导现象,这是新的里程碑。现已发现的最高值是汞钡钙铜氧化物超导体,=134K。高超导体可在液氮温区实现各种应用,有非常大的发展前景。但这类超导体的微观机制尚在探索之中。
8. 固体的元激发
固体中原子或电子的数密度都是很高的。原子之间、电子之间、电子自旋之间都有相互作用,产生不同的集体运动形式,都有各自的基态和低能量激发的基元,即元激发。
各种元激发可分成玻色子和费米子两类,服从不同的统计分布规律。晶体原子间简谐力的作用产生的集体运动是各种模式的格波,其元激发是声子。金属电子气里电子库仑互作用产生等离子体振荡,其元激发是等离体子。黄昆提出极性晶体的横向光频支格波与光波电磁场互作用产生电磁耦合场振荡,其元激发为电磁耦合子。磁有序结构固体中电子自旋之间互作用产生自旋波,其元激发是自旋波量子。这些元激发都是玻色子。导体中的电子和空穴,离子晶体中电子带着晶格畸变运动所形成的极化子,以及超导态的库珀对被拆开形成的正常电子都是费米子。
固体物理学像20世纪物理学一样,量子力学效应、对称性和相位是其主旋律。固体相变和临界现象依赖于材料的结构和基本性质,但也有共同的规律,即相变的序参量变化、临界现象的标度律和普适性。杂质和缺陷破坏了晶格的完整性,影响各种物性,故对固体的技术应用是至关重要的。固体物理学正向结构复杂的、低维的、纳米的和有机的固体以及软物质、生命物质领域发展,并与液氦、液体和流体物理研究合流,形成更为重要的学科——凝聚态物理学。
摘自:《中国大百科全书(第2版)》第8册,中国大百科全书出版社,2009年
来源:小王说科学