sei

华南理工大学,2025年首篇Nature!

然而,由高活性锂和非水电解质之间的反应形成的锂枝晶导致了安全性问题和快速的容量衰减。开发可靠的固体电解质界面对于实现高速率和长寿命的LMBs至关重要,但在技术上仍然具有挑战性。

华南理工大学 sei zr 2025-01-09 19:01  3

Angew:揭示固态钠电离子传输“双相共存”新机制

固态塑晶型电解质由于具有其高离子电导率和稳定电化学窗口等特性而备受关注。然而,由于其对钠金属负极还原稳定性欠佳,导致负极侧被持续腐蚀,且钠离子在该电解质体相中的传输机制尚不明晰。针对上述问题,大连理工大学胡方圆教授创制出新型高性能固态塑晶型电解质,实现了离子传

angew sei 塑晶 2025-01-06 10:55  4

揭秘石墨负极的SEI膜中的有机/无机组分在钾离子电池中的作用

固体电解质界面(SEI)是在初始充电过程中通过电解液分解在负极表面形成的钝化层,对于钾离子电池(PIBs)的安全和电化学性能至关重要。PIBs因其低成本、高能量密度和出色的快充潜力而备受关注。在实际应用中中,基于石墨的电池面临严重的副反应、剧烈的体积变化、较低

负极 石墨 sei 2024-12-24 10:00  4

共轭酞菁框架作为人工SEI构建400 Wh Kg−1锂金属电池

高压金属锂电池(HVLMB)是下一代高能二次电池的理想选择,但由于电极与电解质之间的界面稳定性和相容性差,导致其容量严重下降,限制了其实际应用。已报道的多种策略包括使用各种电解质添加剂或新型亲锂集流体来增强SEI层。虽然这些策略在一定程度上改善了Li的均匀沉积

共轭 酞菁 sei 2024-12-16 09:06  5