Nephrin研究的机遇和挑战

360影视 动漫周边 2025-04-04 01:03 2

摘要:近来研究显示,抗-Nephrin自身抗体(Anti-nephrin Ab)在微小病变(MCD)和局灶性节段性肾小球硬化(FSGS)的发生中扮演重要的作用,本文概述了抗-Nephrin抗体作为MCD和原发性FSGS(pFSGS)的血液循环渗透因子的研究进展,并对

近来研究显示,抗-Nephrin自身抗体(Anti-nephrin Ab)在微小病变(MCD)和局灶性节段性肾小球硬化(FSGS)的发生中扮演重要的作用,本文概述了抗-Nephrin抗体作为MCD和原发性FSGS(pFSGS)的血液循环渗透因子的研究进展,并对将来的研究方向提出了展望。

MCD和FSGS病因主要分三类:足细胞相关基因遗传突变引起、感染或药物使用等继发性因素和不明原因的原发性因素造成。遗传突变只占比在8~14%左右[1-3],继发性因素占比20-30%[4-5],剩下的基本都是由不明原发性因素引起。

当1972年Hoyer等[6]第一次报道了肾移植术后复发FSGS的患者开始,研究人员就推测血液中某种循环渗透因子可能引起了FSGS的产生。随之流行病学研究显示,移植后FSGS具有较高的复发率,有时在移植后几小时内就会发生,这结果进一步促使研究人员相信,致病因子可能不是“肾脏内的局部现象”,而是一种血液循环渗透因子,它通过改变肾小球屏障来损伤足细胞[7-8]。直到2012年Gallon等[9]在一个FSGS复发的患者案例研究中发现,当移植肾被切除并再次移植给另一个没有FSGS病史的受者时,肾脏的功能得到了恢复,且FSGS特有的组织病理学损害也发生了逆转,这基本确定了是血液中存在的某些循环渗透因子导致了FSGS的发生。

随后几年,大量的研究资源投入到寻找在MCD和pFSGS蛋白尿形成中起关键作用的循环渗透因子[10-11]。尽管投入了非常大的资源和研究努力,这些未知的循环通透性因子的鉴定一直是艰苦漫长的,研究者并没有找到可靠一致的生物标志物。

一些被认为增加血清蛋白血管透过性的候选生物标志物分子(表1),包括可溶性尿激酶型纤溶酶原激活物受体(suPAR)[12]、心肌营养素样细胞因子-1 (CLCF-1)[13]、可溶性CD40配体[14]等等,已经发现与MCD和pFSGS的进展和复发相关,但是验证其临床效用的研究表明,这些标记物并不在MCD和FSGS的发展中起到决定性作用,它们也可以在健康人和非肾病综合征患者血清中检测到[15-17]。

表1. FSGS和MCD相关循环渗透因子及其局限性

1966年,在一组患有先天性肾病综合征(NPHS1)[39]的芬兰家系中,研究发现这是一种罕见的遗传基因突变造成的肾脏疾病,但导致这种疾病的具体基因未知。直到1998年NPHS1基因所在的关键染色体区域被鉴定和测序, NPHS1基因的表达产物被命名为Nephrin,其基因座定位于染色体19q12-q13.1[40-41]。虽然Nephrin蛋白的精确结构和功能在此时仍然未知,但据推测,其结构域结构类似于属于免疫球蛋白家族的一大类细胞粘附受体,它可以作为粘附受体和信号蛋白[40]发挥作用。在后续研究中[42-43],证实Nephrin是形成足细胞裂孔隔膜相关复合物(slit diaphragm, SD)的组成部分,其与肾小球内皮细胞和基底膜(GBM)一起形成肾小球滤过屏障。(图1)

图1. Nephrin抗体诱导纵膈改变、足细胞损伤和蛋白质渗漏入尿液中

Nephrin是一种跨膜蛋白,其N-末端为胞外片段,C-末端为胞内结构域,使用对人Nephrin的N-末端特异的抗体检测证实了其位于肾的纵膈[44]。整个蛋白由八个免疫球蛋白样胞外结构域、一个纤连蛋白III型样结构域、一个跨膜结构域和一个短的胞内结构域组成,它通过与肌动蛋白细胞骨架[40,45]的相互作用而维持足细胞的组织形态结构和功能。作为免疫球蛋白超家族的细胞表面受体蛋白,Nephrin还参与细胞间粘附和信号传导功能。当Src激酶家族的Fyn磷酸化Nephrin的胞内结构域的六个酪氨酸残基(Tyr1114、Tyr1136、Tyr1176、Tyr1183、Tyr1193、Tyr1217)中的一个或多个时,由Nephrin的胞内尾部介导的下游信号传导被激活[46]。具体表现为磷酸化的胞内结构域会与几种足细胞胞质蛋白相互作用,包括podocin、CD2AP、NEPH1和磷脂酰肌醇3-激酶(PI3K),以将下游信号传递到肌动蛋白细胞骨架,从而调节足细胞的结构完整性和肾小球滤过狭缝的功能[47-48]。磷酸化Nephrin促进Nck衔接蛋白、ZO-1、连环蛋白、桶蛋白、足细胞素、CD2-AP和PI3K等的募集并与之相互作用,Nck衔接蛋白发出肌动蛋白重塑的信号,并参与多种细胞内信号通路的调节,从而影响对足细胞稳定至关重要的肌动蛋白的聚合动力学[48-49](图2)。

在对NPHS1基因(Nephrin)进行鉴定和测序进行研究之前,科学家已经开始对能够结合到肾小球足突表面的抗体及其诱导蛋白尿的特征进行了探索。Orikasa等人[50]用胶原蛋白酶处理过的Wistar大鼠肾小球免疫BALB/b小鼠,产生了高度器官特异性和物种特异性的抗体IgG1,称为mAb 5-1-6。在体外研究中,观察到mAb 5-1-6结合到肾小球足突的表面。当在大鼠中注射该mAb时,立即诱导蛋白尿,不需要补体激活。这项开拓性的研究是建立循环渗透因子抗体和肾病综合征蛋白尿诱导之间强关联的证据。该方法后来被研究人员用于在动物模型中产生类似的Nephrin抗体,以研究肾小球内的Nephrin定位,并作为诱导蛋白尿和肾病状况的潜在药物靶点[42-43,51]。

虽然动物模型已经成功地证明了抗-Nephrin抗体在介导足细胞损伤中的作用,但在过去几年中,研究其在肾病综合征患者中的作用的报道仍然很少。Watts等人[37]最近进行的一项多中心队列研究,重新激发了人们对重新评估抗-Nephrin抗体和肾病综合征发展之间关系的兴趣。在研究招募的MCD患者中,18例(29%)抗-Nephrin抗体检测阳性,44例(71%)检测阴性。活检分析显示Nephrin所在的足细胞SD区域与点状的IgG沉积共定位。在一些IgG沉积的活组织检查中,出现一种Nephrin的重新分布远离SD的现象,表明抗体对Nephrin定位和破坏的影响。当MCD活动期患者接受治疗时,高水平的循环抗-Nephrin抗体显著减少或消失,这与治疗期显著的蛋白尿减少相关。Hengel等人[36]最近的一项研究显示,在539名被诊断为肾小球疾病的患者中,105名成人MCD患者中有46名(44%),74名FSGS患者中有7名(9%)都具有较高的抗-Nephrin抗体水平。此外,在被诊断为特发性肾病综合征的儿童队列中,182名中有94名(占52%)表现出较高水平的抗-Nephrin抗体。在未接受免疫抑制治疗的患者中发现MCD和特发性肾病综合征患者的抗体阳性率更是高达69%和90%。在研究受试者中,与抗体检测阴性的患者相比,阳性的MCD和FSGS患者表现出更严重的肾病综合征。在小鼠模型中,观察到IgG沉积在足细胞的SD区,特别是在出现足突融合区域沉积更明显。Shirai等人[38]同样报道了这一观察结果。在随访期间,观察到接受糖皮质激素和环孢素免疫抑制治疗的患者表现出短暂的缓解,而接受利妥昔单抗(CD20)治疗的患者表现出抗体水平完全和持续的缓解[52]。为了检测抗-Nephrin抗体对纵裂膈膜的直接作用,对注射抗体的小鼠在3周时的磷酸化蛋白质组分析显示Nephrin在酪氨酸残基Y1191处磷酸化增加。这个酪氨酸残基的磷酸化可能导致肌动蛋白装配、细胞骨架重组和Nephrin内吞。

在Cui和Zhao[53]关于Hengel等人[36]研究的综述报告中,提出这些抗-Nephrin自身抗体可能不仅限于IgG类,在MCD和FSGS中也可观察到其他类如IgM的沉积。尽管Shirai等人[38]在复发期间的一些活组织检查中观察到痕量IgM和C3的沉积,但这表明这些沉积并没有与Nephrin共定位。此外,在缓解后没有观察到IgG沉积的迹象,这表明循环抗-Nephrin抗体高度可能是一种循环通透性因子,与肾移植后复发的发病机制有关。在Bressendorff等人[52]最近报告的一个病例中,一名84岁的男性患者因呼吸急促和水肿入院,他有多种疾病史,包括3期慢性肾病,经治疗后出院。患者再次入院时,经尿检发现出现进行性急性肾损伤,伴有低白蛋白血症和蛋白尿。肾活检显示FSGS发展为与Nephrin重叠的点状IgG沉积,伴有足突消失,但未观察到IgM、IgA、C3、C1q或κ和λ轻链的形成,患者对糖皮质激素治疗无反应。检测显示循环抗-Nephrin抗体阳性,该抗体在血浆置换治疗后逐渐下降。经过七次血浆置换治疗后,抗体水平低于检测限,与对照人群中报告的水平相似,同时基线肾功能恢复,肾功能保持稳定一年半,无复发迹象。

在Shirai等人[38]进行的一项多中心研究中,在22例FSGS肾移植受者(8例为基因突变致病和14例为非遗传性患者)中,14例非遗传性FSGS患者中有11例移植后出现FSGS复发,与非复发FSGS(165 U/mL)和遗传性FSGS(113 U/mL)患者相比,11例复发患者的抗-Nephrin抗体水平显著升高(移植前和移植后复发时分别为831U/mL和1292 U/mL)。抗体水平的升高与提示出现了FSGS的复发,抗-Nephrin抗体水平也与移植后患者的蛋白尿水平相关,在复发性FSGS患者中观察到更高水平的蛋白尿。最近Batal I等[54]评估了肾移植术前的抗-Nephrin抗体水平对术后弥漫性足细胞病(DP)复发的预测价值,回顾性分析了38例移植前留存有血清样本的患者,在中位随访43个月(四分位距8-79个月)后,21例患者出现DP复发,17例无DP复发。移植前抗-Nephrin抗体水平能够预测疾病复发(曲线下面积0.78,P=0.03)。当用之前研究的187U/ml作为阈值诊断时,21例复发患者中有8例(38%)为抗体阳性,17例无复发患者中全部为抗体阴性(P=0.005)。抗-Nephrin抗体水平预测DP具有100%的特异性、100%的阳性预测值、38%的敏感性和57%的阴性预测值。提示术前高水平的抗-Nephrin抗体患者,术后要密切关注肾病的复发(本队列显示100%复发),需程序性监测抗-Nephrin抗体水平。生存分析(time-to-event analysis)结果显示,移植前抗-Nephrin抗体阳性的患者DP复发风险更高(风险比4.9,95%置信区间1.25-18.8,P

展望:机遇和挑战

与其他血液循环渗透因子(suPAR、CD40等)不同,目前还没有研究否定抗-Nephrin抗体作为FSGS和MCD的潜在标志物和血液循环渗透因子的临床价值。但是已报道的研究有一定的局限性,未来可能需要考虑和解决。

(1)超灵敏、标准化定量分析方法对于确保抗-Nephrin抗体检测准确和可比性非常重要。目前主要限制因素是缺乏商业化的人抗-Nephrin抗体,且抗体是多克隆还是单克隆未知,不同患者间是否一致也未知。因此,目前依赖于用阳性的患者血清来制备标准曲线,这会导致不同实验室的阈值不一致。例如,在Watts等人[37]的研究中,对于1:100的样品稀释度,健康人的最大抗-Nephrin抗体阈值设定为187 U/mL。在Shirai等人[38]的研究中,在1:400的样本稀释度下,抗-Nephrin抗体阳性阈值被定义为最大抗体滴度(231 U/mL)。另外,抗-Nephrin抗体在血清中含量低,普通的ELISA很难准确检测到如此低丰度的抗体,特别在使用无抗原包被作为阴性对照时,检测结果(OD差值)为阴性的概率大,在Hengel等人[36]在新英格兰杂志的研究中,通过使用对IgG抗体的富集来提高抗-Nephrin抗体在检测样品中的丰度。基于“富集路径”的抗-Nephrin抗体检测方法研发,是未来高灵敏检测的一个发展方向。

(2)是否有其它循环渗透因子参与pFSGS?已有研究显示,并非所有被诊断患有pFSGS或MCD的患者的抗-Nephrin抗体检测都呈阳性。在Watts[37]研究中,在62名MCD患者中,只有18名抗-Nephrin抗体阳性。这一结果提示,可能有其他循环渗透因子参与了剩余44例患者的MCD诱发。在Hengel等人[36]的研究中,观察到94例特发性肾病综合症患儿为Nephrin抗体阳性,而88例为阴性。在成人MCD患者中有46例抗-Nephrin抗体阳性和59例抗体阴性,pFSGS患者中有7例抗体阳性和67例抗体阴性。这些观察表明,尽管抗-Nephrin抗体可被视为特发性肾病综合征因素包括MCD和FSGS的新的生物标志物和循环渗透因子,它可能并不是对所有MCD和FSGS患者具有普遍适用性。例如,最近的研究报道,Crb2是一种重要的纵裂膈肌蛋白,敲除足细胞CRB2的小鼠在出生后2个月或出生后立即出现大量蛋白尿,此外还表现出NPHS1&2、PODXL表达减少以及肾小球WT-1细胞减少[55-56]。此外,观察到给予足细胞CRB2蛋白的小鼠产生针对足细胞蛋白的抗CRB2抗体,伴有蛋白尿和MCD和FSGS[57]的特征性特征。然而,关于在患有特发性肾病综合征的人中检测CRB2抗体的报道仍然有限。

(3)抗-Nephrin抗体阳性受者肾移植的脱敏治疗。脱敏治疗方案对抗-Nephrin抗体阳性的受者,术后FSGS复发研究还比较缺乏,目前FSGS复发的研究队列未区分出抗体阳性这一亚队列。早期在Gallon等人[9]的报告中,10例高风险肾移植受者接受了两次术前血浆置换和5次术后血浆置换,7例患者在终点未发生FSGS复发。在Bressendorff等人[52]最近的一项研究中,一名接受7轮血浆置换治疗的患者痊愈,无复发迹象,没有复发被认为是联合高剂量糖皮质激素治疗的结果。Carvajal Abreu,K.等人[58]还指出,在14周内进行25次血浆置换,同时使用甲强龙和泼尼松龙,对于预防移植排斥和FSGS复发至关重要。Kim等人[59]的一项研究还显示,一名肾移植患者在对钙调磷酸酶抑制剂无反应后出现复发,对其进行了13个疗程的血浆置换治疗,同时给予利妥昔单抗,患者获得了部分恢复。也有研究显示,在66例pFSGS受者的研究中,37例接受血浆置换联合或不联合抗CD20单抗的受者,有62%有FSGS复发,27未接受任何脱敏治疗的受者中仅有51%复发[60]。这些研究表明,预脱敏方案可降低FSGS的复发,但目前暂未有大型研究证实,对术前脱敏治疗是否能够影响FSGS的复发,还存在不一致的结果。未来研究脱敏治疗对抗-Nephrin抗体阳性FSGS这一亚队列的脱敏方案显得比较重要。

(4)最后,目前还没有研究检测Nephrin不同表位和抗-Nephrin抗体的相互作用,是否有多个表位表现出抗体结合能力,及不同表位的结合能力是否一致等问题并不清楚。对抗-Nephrin抗体结合Nephrin的特定区域以诱导Nephrin重新分布和足细胞损伤也不是很清楚。也没有研究确定阻断Nephrin表位如何能防止与抗体的相互作用。解决这些问题对于阐明Nephrin抗体致病机制、对开发针对抗-Nephrin抗体阳性FSGS患者的特异性药物非常重要。下一步需要对Nephrin不同结构域、可作为抗-Nephrin抗体结合位点的各种表位以及可阻断这些表位以抑制与抗-Nephrin抗体结合的潜在配体进行全面研究。

[1]Büscher AK, Konrad M, Nagel M, et al. Mutations in podocyte genes are a rare cause of primary FSGS associated with ESRD in adult patients. Clin Nephrol. 2012;78(1):47-53. doi:10.5414/cn107320

[2]Isaranuwatchai S, Chanakul A, Ittiwut C, Ittiwut R, Srichomthong C, Shotelersuk V, Suphapeetiporn K, Praditpornsilpa K. Pathogenic variant detection rate by whole exome sequencing in Thai patients with biopsy-proven focal segmental glomerulosclerosis. Sci Rep. 2023 Jan 16;13(1):805. doi: 10.1038/s41598-022-26291-y. PMID: 36646731; PMCID: PMC9842604.

[3]Santín S, Bullich G, Tazón-Vega B, et al. Clinical utility of genetic testing in children and adults with steroid-resistant nephrotic syndrome.Clin J Am Soc Nephrol. 2011;6(5):1139-1148. doi:10.2215/CJN.05260610

[4]Gandzali Ngabe, P.E., Bonkano Baoua, D., Lengani, A.H.Y., Yattara, H., Kama Yatte, A., Loumingou, R., Tall, L., Ka, E.F., Niang, A. and Diouf, B. (2023) Focal Segmantal Glomerulosclerosis: Epidemiological, Clinico-Biological, Pathological, Etiological, Therapeutic and Evolutionary Profiles in Dakar. Open Journal of Nephrology, 13, 174-194. doi: 10.4236/ojneph.2023.132017.

[5]Rery TF Yuniarti, Ian Effendi, Zulkhair Ali, Novadian, Suprapti, Elfiani, Novandra AP, Dila Siti Hamidah, Fadil Pramudhya Husein, & Ika Kartika Edi P. (2024). Is It a Tumor or Not? A Case of Focal Segmental Glomerulosclerosis Secondary to Type 2 Diabetes with a Concomitant Renal Pseudotumor.Bioscientia Medicina : Journal of Biomedicine and Translational Research, 8(12), 5801-5813.

[6]Hoyer, J. R., Vernier, R. L., Najarian, J. S., Raij, L., Simmons, R. L., and Michael, A. F., Recurrence of idiopathic nephrotic syndrome after renal transplantation, Lancet, 1972, Vol 2(7773) p. 343-8.

[7]Dantal, J., Baatard, R., Hourmant, M., Cantarovich, D., Buzelin, F., and Soulillou, J. P., Recurrent nephrotic syndrome following renal transplantation in patients with focal glomerulosclerosis: a one-center study of plasma exchange effects, Transplantation, 1991, Vol 52(5) p.

[8]Savin Virginia, J., Sharma, R., Sharma, M., McCarthy Ellen, T., Swan Suzanne, K., Ellis, E., Lovell, H., Warady, B., Gunwar, S., Chonko Arnold, M., Artero, M., and Vincenti, F., Circulating Factor Associated with Increased Glomerular Permeability to Albumin in Recurrent Focal Segmental Glomerulosclerosis, New England Journal of Medicine, 1991, Vol 334(14) p. 878-883.

[9] Gallon, L., Leventhal, J., Skaro, A., Kanwar, Y., and Alvarado, A., Resolution of recurrent focal segmental glomerulosclerosis after retransplantation, N Engl J Med, 2012, Vol 366(17) p. 1648-9.

[10] den Braanker, D. J. W., Maas, R. J., Deegens, J. K., Yanginlar, C., Wetzels, J. F. M., van der Vlag, J., and Nijenhuis, T., Novel in vitro assays to detect circulating permeability factor(s) in idiopathic focal segmental glomerulosclerosis, Nephrology Dialysis Transplantation, 2021, Vol 36(2) p. 247-256.

[11] Gauckler, P., Shin, J. I., Alberici, F., Audard, V., Bruchfeld, A., Busch, M., Cheung, C. K., Crnogorac, M., Delbarba, E., Eller, K., Faguer, S., Galesic, K., Griffin, S., Hrušková, Z., Jeyabalan, A., Karras, A., King, C., Kohli, H. S., Maas, R., Mayer, G., Moiseev, S., Muto, M., Odler, B., Pepper, R. J., Quintana, L. F., Radhakrishnan, J., Ramachandran, R., Salama, A. D., Segelmark, M., Tesař, V., Wetzels, J., Willcocks, L., Windpessl, M., Zand, L., Zonozi, R., and Kronbichler, A., Rituximab in adult minimal change disease and focal segmental glomerulosclerosis - What is known and what is still unknown?, Autoimmunity Reviews, 2020, Vol 19(11) p. 102671.

[12] Wei, C., Trachtman, H., Li, J., Dong, C., Friedman, A. L., Gassman, J. J., McMahan, J. L., Radeva, M., Heil, K. M., Trautmann, A., Anarat, A., Emre, S., Ghiggeri, G. M., Ozaltin, F., Haffner, D., Gipson, D. S., Kaskel, F., Fischer, D. C., Schaefer, F., and Reiser, J., Circulating suPAR in two cohorts of primary FSGS, J Am Soc Nephrol, 2012, Vol 23(12) p. 2051-9.

[13] Sharma, M., Zhou, J., Gauchat, J. F., Sharma, R., McCarthy, E. T., Srivastava, T., and Savin, V. J., Janus kinase 2/signal transducer and activator of transcription 3 inhibitors attenuate the effect of cardiotrophin-like cytokine factor 1 and human focal segmental glomerulosclerosis serum on glomerular filtration barrier, Transl Res, 2015, Vol 166(4) p. 384-98.

[14] Doublier, S., Zennaro, C., Musante, L., Spatola, T., Candiano, G., Bruschi, M., Besso, L., Cedrino, M., Carraro, M., Ghiggeri, G. M., Camussi, G., and Lupia, E., Soluble CD40 ligand directly alters glomerular permeability and may act as a circulating permeability factor in FSGS, PLOS ONE, 2017, Vol 12(11) p. e0188045.

[15] Meijers, B., Maas, R. J. H., Sprangers, B., Claes, K., Poesen, R., Bammens, B., Naesens, M., Deegens, J. K. J., Dietrich, R., Storr, M., Wetzels, J. F. M., Evenepoel, P., and Kuypers, D., The soluble urokinase receptor is not a clinical marker for focal segmental glomerulosclerosis, Kidney International, 2014, Vol 85(3) p. 636-640.

[16] Müller-Deile, J., Sarau, G., Kotb, A. M., Jaremenko, C., Rolle-Kampczyk, U. E., Daniel, C., Kalkhof, S., Christiansen, S. H., and Schiffer, M., Novel diagnostic and therapeutic techniques reveal changed metabolic profiles in recurrent focal segmental glomerulosclerosis, Scientific Reports, 2021, Vol 11(1) p. 4577.

[17] Hou, S., Yang, B., Chen, Q., Xu, Y., and Li, H., Potential biomarkers of recurrent FSGS: a review, BMC Nephrology, 2024, Vol 25(1) p. 258.

[18]Wei, C., El Hindi, S., Li, J., Fornoni, A., Goes, N., Sageshima, J., Maiguel, D., Karumanchi, S. A., Yap, H. K., Saleem, M., Zhang, Q., Nikolic, B., Chaudhuri, A., Daftarian, P., Salido, E., Torres, A., Salifu, M., Sarwal, M. M., Schaefer, F., Morath, C., Schwenger, V., Zeier, M., Gupta, V., Roth, D., Rastaldi, M. P., Burke, G., Ruiz, P., and Reiser, J., Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis, Nat Med, 2011, Vol 17(8) p. 952-60.

[19] Chebotareva, N., Vinogradov, A., Cao, V., Gindis, A., Berns, A., Alentov, I., and Sergeeva, N., Serum levels of plasminogen activator urokinase receptor and cardiotrophin-like cytokine factor 1 in patients with nephrotic syndrome, Clin Nephrol, 2022, Vol 97(2) p. 103-110.

[20] da Silva, C. A., Araújo, L. S., Dos Reis Monteiro, M. L. G., de Morais Pereira, L. H., da Silva, M. V., Castellano, L. R. C., Corrêa, R. R. M., Dos Reis, M. A., and Machado, J. R., Evaluation of the Diagnostic Potential of uPAR as a Biomarker in Renal Biopsies of Patients with FSGS, Dis Markers, 2019, Vol 2019 p. 1070495.

[21] Wei, C., Möller, C. C., Altintas, M. M., Li, J., Schwarz, K., Zacchigna, S., Xie, L., Henger, A., Schmid, H., Rastaldi, M. P., Cowan, P., Kretzler, M., Parrilla, R., Bendayan, M., Gupta, V., Nikolic, B., Kalluri, R., Carmeliet, P., Mundel, P., and Reiser, J., Modification of kidney barrier function by the urokinase receptor, Nat Med, 2008, Vol 14(1) p. 55-63. 10.1038/nm1696.

[22] Meijers, B., Maas, R. J. H., Sprangers, B., Claes, K., Poesen, R., Bammens, B., Naesens, M., Deegens, J. K. J., Dietrich, R., Storr, M., Wetzels, J. F. M., Evenepoel, P., and Kuypers, D., The soluble urokinase receptor is not a clinical marker for focal segmental glomerulosclerosis, Kidney International, 2014, Vol 85(3) p. 636-640.

[23] Maas, R. J. H., Wetzels, J. F. M., and Deegens, J. K. J., Serum-soluble urokinase receptor concentration in primary FSGS, Kidney International, 2012, Vol 81(10) p. 1043-1044.

[24] Maas, R. J. H., Wetzels, J. F. M., and Deegens, J. K. J., Serum suPAR concentrations in patients with focal segmental glomerulosclerosis with end-stage renal disease, Kidney International, 2014, Vol 85(3) p. 711.

[25] Maas, R. J. H., Deegens, J. K. J., and Wetzels, J. F. M., Serum suPAR in patients with FSGS: trash or treasure?, Pediatric Nephrology, 2013, Vol 28(7) p. 1041-1048. 10.1007/s00467-013-2452-5.

[26] Hayek, S. S., Tahhan, A. S., Ko, Y.-A., Alkhoder, A., Zheng, S., Bhimani, R., Hartsfield, J., Kim, J., Wilson, P., Shaw, L., Wei, C., Reiser, J., and Quyyumi, A. A., Soluble Urokinase Plasminogen Activator Receptor Levels and Outcomes in Patients with Heart Failure, Journal of Cardiac Failure, 2023, Vol 29(2) p. 158-167.

[27] Mohammed, M. S. and Ahmed, H. S., Plasminogen activator urokinase receptor as a diagnostic and prognostic biomarker in type 2 diabetic patients with cardiovascular disease, J Cardiovasc Thorac Res, 2023, Vol 15(3) p. 154-160. 10.34172/jcvtr.2023.32895.

[28] Sharma, M., Zhou, J., Gauchat, J. F., Sharma, R., McCarthy, E. T., Srivastava, T., and Savin, V. J., Janus kinase 2/signal transducer and activator of transcription 3 inhibitors attenuate the effect of cardiotrophin-like cytokine factor 1 and human focal segmental glomerulosclerosis serum on glomerular filtration barrier, Transl Res, 2015, Vol 166(4) p. 384-98.

[29] Savin, V. J., Sharma, M., Zhou, J., Gennochi, D., Fields, T., Sharma, R., McCarthy, E. T., Srivastava, T., Domen, J., Tormo, A., and Gauchat, J. F., Renal and Hematological Effects of CLCF-1, a B-Cell-Stimulating Cytokine of the IL-6 Family, J Immunol Res, 2015, Vol 2015 p. 714964.

[30] Savin, V. J., McCarthy, E. T., and Sharma, M., Permeability factors in nephrotic syndrome and focal segmental glomerulosclerosis, Kidney Res Clin Pract, 2012, Vol 31(4) p. 205-13.

[31] McCarthy, E. T., Sharma, M., and Savin, V. J., Circulating permeability factors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis, Clin J Am Soc Nephrol, 2010, Vol 5(11) p. 2115-21.

[32] Delville, M., Sigdel, T. K., Wei, C., Li, J., Hsieh, S. C., Fornoni, A., Burke, G. W., Bruneval, P., Naesens, M., Jackson, A., Alachkar, N., Canaud, G., Legendre, C., Anglicheau, D., Reiser, J., and Sarwal, M. M., A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation, Sci Transl Med, 2014, Vol 6(256) p. 256ra136.

[33] Komura, K., Fujimoto, M., Matsushita, T., Yanaba, K., Kodera, M., Kawasuji, A., Hasegawa, M., Takehara, K., and Sato, S., Increased serum soluble CD40 levels in patients with systemic sclerosis, J Rheumatol, 2007, Vol 34(2) p. 353-8.

[34] Liu, H., Qi, C. J., Zhuang, Y. M., Gan, J. H., Li, H. L., Yin, C. S., and Zhang, X. G., [Serum levels and clinical significance of soluble CD40 in liver disease], Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 2006, Vol 22(6) p. 738-41.

[35] Chebotareva, N., Vinogradov, A., Birukova, Y., Alentov, I., Sergeeva, N., Chemodanova, D., Kononikhin, A. S., and Moiseev, S. V., A pilot study of anti-nephrin antibodies in podocytopaties among adults, Nephrology (Carlton), 2024, Vol 29(2) p. 86-92.

[36] Hengel Felicitas, E., Dehde, S., Lassé, M., Zahner, G., Seifert, L., Schnarre, A., Kretz, O., Demir, F., Pinnschmidt Hans, O., Grahammer, F., Lucas, R., Mehner Lea, M., Zimmermann, T., Billing Anja, M., Oh, J., Mitrotti, A., Pontrelli, P., Debiec, H., Dossier, C., Colucci, M., Emma, F., Smoyer William, E., Weins, A., Schaefer, F., Alachkar, N., Diemert, A., Hogan, J., Hoxha, E., Wiech, T., Rinschen Markus, M., Ronco, P., Vivarelli, M., Gesualdo, L., Tomas Nicola, M., and Huber Tobias, B., Autoantibodies Targeting Nephrin in Podocytopathies, New England Journal of Medicine, 2024, Vol 391(5) p. 422-433.

[37] Watts, A. J. B., Keller, K. H., Lerner, G., Rosales, I., Collins, A. B., Sekulic, M., Waikar, S. S., Chandraker, A., Riella, L. V., Alexander, M. P., Troost, J. P., Chen, J., Fermin, D., Yee, J. L., Sampson, M. G., Beck, L. H., Jr., Henderson, J. M., Greka, A., Rennke, H. G., and Weins, A., Discovery of Autoantibodies Targeting Nephrin in Minimal Change Disease Supports a Novel Autoimmune Etiology, J Am Soc Nephrol, 2022, Vol 33(1) p. 238-252.

[38] Shirai, Y., Miura, K., Ishizuka, K., Ando, T., Kanda, S., Hashimoto, J., Hamasaki, Y., Hotta, K., Ito, N., Honda, K., Tanabe, K., Takano, T., and Hattori, M., A multi-institutional study found a possible role of anti-nephrin antibodies in post-transplant focal segmental glomerulosclerosis recurrence, Kidney Int, 2024, Vol 105(3) p. 608-617.

[39] Norio, R., Heredity in the congenital nephrotic syndrome. A genetic study of 57 finnish FAMILIES WITH A REVIEW OF REPORTED CASES, Ann Paediatr Fenn, 1966, Vol 12 p. Suppl 27:1-94.

[40] Kestilä, M., Lenkkeri, U., Männikkö, M., Lamerdin, J., McCready, P., Putaala, H., Ruotsalainen, V., Morita, T., Nissinen, M., Herva, R., Kashtan, C. E., Peltonen, L., Holmberg, C., Olsen, A., and Tryggvason, K., Positionally Cloned Gene for a Novel Glomerular Protein—Nephrin—Is Mutated in Congenital Nephrotic Syndrome, Molecular Cell, 1998, Vol 1(4) p. 575-582.

[41] Kestilä, M., Männikkö, M., Holmberg, C., Gyapay, G., Weissenbach, J., Savolainen, E. R., Peltonen, L., and Tryggvason, K., Congenital nephrotic syndrome of the Finnish type maps to the long arm of chromosome 19, Am J Hum Genet, 1994, Vol 54(5) p. 757-64.

[42] Ruotsalainen, V., Ljungberg, P., Wartiovaara, J., Lenkkeri, U., Kestilä, M., Jalanko, H., Holmberg, C., and Tryggvason, K., Nephrin is specifically located at the slit diaphragm of glomerular podocytes, Proc Natl Acad Sci U S A, 1999, Vol 96(14) p. 7962-7.

[43]Topham, P. S., Kawachi, H., Haydar, S. A., Chugh, S., Addona, T. A., Charron, K. B., Holzman, L. B., Shia, M., Shimizu, F., and Salant, D. J., Nephritogenic mAb 5-1-6 is directed at the extracellular domain of rat nephrin, J Clin Invest, 1999, Vol 104(11) p. 1559-66.

[44Holzman, L. B., St John, P. L., Kovari, I. A., Verma, R., Holthofer, H., and Abrahamson, D. R., Nephrin localizes to the slit pore of the glomerular epithelial cell, Kidney Int, 1999, Vol 56(4) p. 1481-91.

[45] Schoeb, D. S., Chernin, G., Heeringa, S. F., Matejas, V., Held, S., Vega-Warner, V., Bockenhauer, D., Vlangos, C. N., Moorani, K. N., Neuhaus, T. J., Kari, J. A., MacDonald, J., Saisawat, P., Ashraf, S., Ovunc, B., Zenker, M., and Hildebrandt, F., Nineteen novel NPHS1 mutations in a worldwide cohort of patients with congenital nephrotic syndrome (CNS), Nephrol Dial Transplant, 2010, Vol 25(9) p. 2970-6.

[46] Denhez, B. and Geraldes, P., "Regulation of Nephrin Phosphorylation in Diabetes and Chronic Kidney Injury", in Protein Reviews: Volume 18, M.Z. Atassi, Editor, Springer Singapore: Singapore. 2017. p. 149-161.

[47] Tian, Y., Chen, X.-m., Liang, X.-m., Wu, X.-b., and Yao, C.-m., SGLT2 inhibitors attenuate nephrin loss and enhance TGF-β1 secretion in type 2 diabetes patients with albuminuria: a randomized clinical trial, Scientific Reports, 2022, Vol 12(1) p. 15695.

[48] Verma, R., Kovari, I., Soofi, A., Nihalani, D., Patrie, K., and Holzman, L. B., Nephrin ectodomain engagement results in Src kinase activation, nephrin phosphorylation, Nck recruitment, and actin polymerization, J Clin Invest, 2006, Vol 116(5) p. 1346-59.

[49] Jones, N., Blasutig, I. M., Eremina, V., Ruston, J. M., Bladt, F., Li, H., Huang, H., Larose, L., Li, S. S. C., Takano, T., Quaggin, S. E., and Pawson, T., Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes, Nature, 2006, Vol 440(7085) p. 818-823.

[50] Orikasa, M., Matsui, K., Oite, T., and Shimizu, F., , The Journal of Immunology, 1988, Vol 141(3) p. 807-814.

[51] Kikuchi, H., Kawachi, H., Ito, Y., Matsui, K., Nosaka, H., Saito, A., Orikasa, M., Arakawa, M., and Shimizu, F., Severe proteinuria, sustained for 6 months, induces tubular epithelial cell injury and cell infiltration in rats but not progressive interstitial fibrosis, Nephrology Dialysis Transplantation, 2000, Vol 15(6) p. 799-810.

[52] Bressendorff, I., Nelveg-Kristensen, K. E., Ghasemi, M., Watts, A. J. B., Elversang, J., Keller, K. H., Nielsen, F. C., Szpirt, W., and Weins, A., Antinephrin-Associated Primary Focal Segmental Glomerulosclerosis Successfully Treated With Plasmapheresis, Kidney International Reports, 2024, Vol 9(9) p. 2829-2831.

[53] Cui, Z. and Zhao, M.-h., Anti-nephrin autoantibodies: a paradigm shift in podocytopathies, Nature Reviews Nephrology, 2024, Vol 20(10) p. 639-640.

[54]Batal I, Watts AJB, Gibier JB, Hamroun A, Top I, Provot F, Keller K, Ye X, Fernandez HE, Leal R, Andeen NK, Crew RJ, Dube GK, Vasilescu ER, Ratner LE, Bowman N, Bomback AS, Sanna-Cherchi S, Kiryluk K, Weins A. Pre-transplant anti-nephrin antibodies are specific predictors of recurrent diffuse podocytopathy in the kidney allograft. Kidney Int. 2024 Oct;106(4):749-752. doi: 10.1016/j.kint.2024.07.022.

[55] Tanoue, A., Katayama, K., Ito, Y., Joh, K., Toda, M., Yasuma, T., D’Alessandro-Gabazza, C. N., Kawachi, H., Yan, K., Ito, M., Gabazza, E. C., Tryggvason, K., and Dohi, K., Podocyte-specific Crb2 knockout mice develop focal segmental glomerulosclerosis, Scientific Reports, 2021, Vol 11(1) p. 20556.

[56] Möller-Kerutt, A., Rodriguez-Gatica, J. E., Wacker, K., Bhatia, R., Siebrasse, J. P., Boon, N., Van Marck, V., Boor, P., Kubitscheck, U., Wijnholds, J., Pavenstädt, H., and Weide, T., Crumbs2 Is an Essential Slit Diaphragm Protein of the Renal Filtration Barrier, J Am Soc Nephrol, 2021, Vol 32(5) p. 1053-1070.

[57] Hada, I., Shimizu, A., Takematsu, H., Nishibori, Y., Kimura, T., Fukutomi, T., Kudo, A., Ito-Nitta, N., Kiuchi, Z., Patrakka, J., Mikami, N., Leclerc, S., Akimoto, Y., Hirayama, Y., Mori, S., Takano, T., and Yan, K., A Novel Mouse Model of Idiopathic Nephrotic Syndrome Induced by Immunization with the Podocyte Protein Crb2, J Am Soc Nephrol, 2022, Vol 33(11) p. 2008-2025.

[58] Carvajal Abreu, K., Loos, S., Fischer, L., Pape, L., Wiech, T., Kemper, M. J., Tönshoff, B., Oh, J., and Schild, R., Case report: Early onset de novo FSGS in a child after kidney transplantation—a successful treatment, 2023, Vol 11 p.

[59] Kim, Y.-J., Lee, S.-W., Kim, M.-S., Kim, Y.-J., Choi, J.-Y., Cho, J.-H., Kim, C.-D., Kim, Y.-L., Yun, W.-S., Huh, S., Lim, J.-H., and Park, S.-H., Anuria after kidney transplantation diagnosed as early recurrence of focal segmental glomerulosclerosis combined with acute calcineurin inhibitor nephrotoxicity: a case report and literature review, BMC Nephrology, 2024, Vol 25(1) p. 123.

[60]Alasfar S , Matar D , Montgomery RA ,et al. Rituximab and therapeutic plasma exchange in recurrent focal segmental glomerulosclerosis postkidney transplantation[J]. Transplantation, 2018,102(3):e115-e120. DOI: 10.1097/TP.000000000000200

来源:移路相伴

相关推荐