摘要:一项近日发表在Science的工作结合超声成像的“GFP/染料”,也就是基因编码或者人工合成的可以响应超声的微气囊/气泡结构探针[1]–[3],以及巧妙设计的片层超声束(整合时序3个超声脉冲(交叉、左、右))来更灵敏特异地解析片层中超声探针的非线性(随着声压非
一项近日发表在Science的工作结合超声成像的“GFP/染料”,也就是基因编码或者人工合成的可以响应超声的微气囊/气泡结构探针[1]–[3],以及巧妙设计的片层超声束(整合时序3个超声脉冲(交叉、左、右))来更灵敏特异地解析片层中超声探针的非线性(随着声压非线性变化)散射信号[4];从而在保证深度和视野(结合阵列3D扫描模式可成像约1立方厘米)的前提下进一步突破时空分辨率[5]。
整合时序3个超声脉冲来实现特异解析超声片层中的非线性散射信号[5]。
研究人员基于此方法追踪了小鼠肿瘤及其坏死状态(结合基因编码的超声探针),以及动态观察大鼠脑毛细血管(流速可低于3 mm/s;使用人工合成的微气泡超声探针,2D成像模式)[5], [6]。
非线性片层超声成像实现小鼠肿瘤追踪(可追踪肿瘤大小、基因表达和坏死状态)和动态观察大鼠的脑毛细血管[5]。
该项工作的通讯作者是荷兰Delft University of Technology的David Maresca;2025年4月4日发表在Science[5]。
Comment(s):
基于探针特性非常理性的设计。将来或许可以联合经典基于光学的方法[7], [8]实现既有“大背景”又“重点突出”的整合成像。
不过该方法在“多色”等方面实现起来难度比较大,或许结合基因编码的“油滴”[9]以及更进一步的散射信号分析来实现multiplexing能力。
参考文献:
[1] M. G. Shapiro et al., “Biogenic gas nanostructures as ultrasonic molecular reporters,” Nat. Nanotechnol., vol. 9, no. 4, pp. 311–316, 2014, doi: 10.1038/nnano.2014.32.
[2] P. Dutkaet al., “Structure of Anabaena flos-aquae gas vesicles revealed by cryo-ET,” Structure, vol. 31, no. 5, pp. 518-528.e6, 2023, doi: https://doi.org/10.1016/j.str.2023.03.011.
[3] A. Matalliotakis, R. Waasdorp, M. D. Verweij, and D. Maresca, “Impact of wavefront shape on nonlinear ultrasound imaging of monodisperse microbubbles,” Phys. Rev. Appl., vol. 22, no. 3, Mar. 2024, doi: 10.1103/PhysRevApplied.22.034062.
[4] D. Maresca, D. P. Sawyer, G. Renaud, A. Lee-Gosselin, and M. G. Shapiro, “Nonlinear X-Wave Ultrasound Imaging of Acoustic Biomolecules,” Phys. Rev. X, vol. 8, no. 4, p. 41002, 2018, doi: 10.1103/PhysRevX.8.041002.
[5] B. Heiles et al., “Nonlinear sound-sheet microscopy: Imaging opaque organs at the capillary and cellular scale,” Science (80-. )., vol. 388, no. 6742, Apr. 2025, doi: 10.1126/science.ads1325.
[6] C. Errico et al., “Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging,” Nature, vol. 527, no. 7579, pp. 499–502, 2015, doi: 10.1038/nature16066.
[7] W. Zong et al., “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods, vol. 14, no. 7, pp. 713–719, 2017, doi: 10.1038/nmeth.4305.
[8] Y. Zhanget al., “Long-term mesoscale imaging of 3D intercellular dynamics across a mammalian organ.,” Cell, vol. 187, no. 21, pp. 6104-6122.e25, Oct. 2024, doi: 10.1016/j.cell.2024.08.026.
[9] X. Lv et al., “Identification of gene products that control lipid droplet size in yeast using a high-throughput quantitative image analysis,” Biochim. Biophys. Acta - Mol. Cell Biol. Lipids, vol. 1864, no. 2, pp. 113–127, 2019, doi: https://doi.org/10.1016/j.bbalip.2018.11.001.
原文链接:
来源:难生活一点号