摘要:利用三角函数公式化简f(x)=5\cos x - \cos5x,\cos5x = \cos(4x + x)=\cos4x\cos x-\sin4x\sin x,再结合倍角公式逐步化简(也可利用导数)。
1. (1)求f(x)在[0,\frac{\pi}{4}]的最大值
- 利用三角函数公式化简f(x)=5\cos x - \cos5x,\cos5x = \cos(4x + x)=\cos4x\cos x-\sin4x\sin x,再结合倍角公式逐步化简(也可利用导数)。
- 对f(x)求导f^\prime(x)=-5\sin x + 5\sin5x,根据和角公式\sin5x=\sin(4x + x)=\sin4x\cos x+\cos4x\sin x,进一步化简f^\prime(x)=-5\sin x + 5(\sin4x\cos x+\cos4x\sin x),再利用倍角公式\sin4x = 2\sin2x\cos2x = 4\sin x\cos x\cos2x等化简,或者利用\sin A-\sin B = 2\cos\frac{A + B}{2}\sin\frac{A - B}{2},f^\prime(x)=5(\sin5x-\sin x)=5\times2\cos3x\sin2x = 10\cos3x\cdot2\sin x\cos x = 20\cos3x\sin x\cos x。
- 在[0,\frac{\pi}{4}]上,\sin x\geq0,\cos x\geq0,\cos3x:当x\in[0,\frac{\pi}{4}],3x\in[0,\frac{3\pi}{4}],\cos3x在[0,\frac{\pi}{3}]非负,[\frac{\pi}{3},\frac{3\pi}{4}]非正,但f^\prime(x)在[0,\frac{\pi}{4}],x = 0时f^\prime(0)=0,x\in(0,\frac{\pi}{4}),\sin x\gt0,\cos x\gt0,\cos3x在x\in[0,\frac{\pi}{9}]正,[\frac{\pi}{9},\frac{\pi}{4}]部分情况,不过另一种方式,f(x)在[0,\frac{\pi}{4}],f(0)=5\cos0-\cos0 = 4,f(\frac{\pi}{4})=5\cos\frac{\pi}{4}-\cos\frac{5\pi}{4}=5\times\frac{\sqrt{2}}{2}-(-\frac{\sqrt{2}}{2}) = 3\sqrt{2}\approx4.24,再看导数,f^\prime(x)=20\cos3x\sin x\cos x,在[0,\frac{\pi}{4}],当x\in[0,\frac{\pi}{6}],\cos3x\geq0,f(x)递增;x\in[\frac{\pi}{6},\frac{\pi}{4}],\cos3x可能变负,但计算f(x)的最大值,通过化简f(x)=5\cos x-(2\cos^{2}2x - 1)(因为\cos5x = 1 - 2\sin^{2}\frac{5x}{2}等,更简单的是用复数或已知公式\cos5x = 16\cos^{5}x - 20\cos^{3}x + 5\cos x,则f(x)=5\cos x-(16\cos^{5}x - 20\cos^{3}x + 5\cos x)=-16\cos^{5}x + 20\cos^{3}x=-4\cos^{3}x(4\cos^{2}x - 5),令t = \cos x,x\in[0,\frac{\pi}{4}],t\in[\frac{\sqrt{2}}{2},1],y=-4t^{3}(4t^{2}-5)=-16t^{5}+20t^{3},求导y^\prime=-80t^{4}+60t^{2}= - 20t^{2}(4t^{2}-3),当t\in[\frac{\sqrt{2}}{2},1],4t^{2}-3在t=\frac{\sqrt{3}}{2}\approx0.866时为0,\frac{\sqrt{2}}{2}\approx0.707\lt\frac{\sqrt{3}}{2},所以在[\frac{\sqrt{2}}{2},\frac{\sqrt{3}}{2}],y^\prime\gt0,t\in[\frac{\sqrt{3}}{2},1],y^\prime\lt0,t = \frac{\sqrt{3}}{2}时y取得最大值,y=-16\times(\frac{\sqrt{3}}{2})^{5}+20\times(\frac{\sqrt{3}}{2})^{3}=-16\times\frac{9\sqrt{3}}{32}+20\times\frac{3\sqrt{3}}{8}=-\frac{9\sqrt{3}}{2}+\frac{15\sqrt{3}}{2}=3\sqrt{3}\approx5.196?不对,之前用f(0)=4,f(\frac{\pi}{4})=3\sqrt{2}\approx4.24,可能化简错了,正确的\cos5x展开:\cos5x = \cos(2\times2x + x)=2\cos^{2}2x - 1,\cos2x = 2\cos^{2}x - 1,所以\cos5x = 2(2\cos^{2}x - 1)^{2}-1 = 8\cos^{4}x - 8\cos^{2}x + 1,则f(x)=5\cos x-(8\cos^{4}x - 8\cos^{2}x + 1)=-8\cos^{4}x + 8\cos^{2}x + 5\cos x - 1,令t = \cos x,t\in[\frac{\sqrt{2}}{2},1],y=-8t^{4}+8t^{2}+5t - 1,求导y^\prime=-32t^{3}+16t + 5,t = 1时y^\prime=-32 + 16 + 5=-11\lt0,t=\frac{\sqrt{2}}{2}时y^\prime=-32\times(\frac{\sqrt{2}}{2})^{3}+16\times\frac{\sqrt{2}}{2}+5=-32\times\frac{2\sqrt{2}}{8}+8\sqrt{2}+5=-8\sqrt{2}+8\sqrt{2}+5 = 5\gt0,所以存在t_0\in(\frac{\sqrt{2}}{2},1)使y^\prime = 0,但计算f(0)=5 - 1 = 4,f(\frac{\pi}{3})=5\times\frac{1}{2}-\cos\frac{5\pi}{3}= \frac{5}{2}-\frac{1}{2}=2,f(\frac{\pi}{4})=5\times\frac{\sqrt{2}}{2}-\cos\frac{5\pi}{4}= \frac{5\sqrt{2}}{2}+\frac{\sqrt{2}}{2}=3\sqrt{2}\approx4.24,f(\frac{\pi}{6})=5\times\frac{\sqrt{3}}{2}-\cos\frac{5\pi}{6}= \frac{5\sqrt{3}}{2}+\frac{\sqrt{3}}{2}=3\sqrt{3}\approx5.196,哦,x = \frac{\pi}{6}\in[0,\frac{\pi}{4}]吗?\frac{\pi}{6}\approx0.523,\frac{\pi}{4}\approx0.785,所以x = \frac{\pi}{6}在区间内,此时f(\frac{\pi}{6})=3\sqrt{3},而3\sqrt{3}\approx5.196,再看x = 0时f(0)=4,所以最大值是3\sqrt{3}?不对,可能我之前公式用错,正确的\cos5x公式是\cos5x = 16\cos^{5}x - 20\cos^{3}x + 5\cos x,所以f(x)=5\cos x-(16\cos^{5}x - 20\cos^{3}x + 5\cos x)=-16\cos^{5}x + 20\cos^{3}x = 4\cos^{3}x(5 - 4\cos^{2}x),令t = \cos x,x\in[0,\frac{\pi}{4}],t\in[\frac{\sqrt{2}}{2},1],当t = \frac{\sqrt{3}}{2}(即x = \frac{\pi}{6}),5 - 4\cos^{2}x = 5 - 4\times\frac{3}{4}=5 - 3 = 2,\cos^{3}x = (\frac{\sqrt{3}}{2})^{3}=\frac{3\sqrt{3}}{8},所以f(x)=4\times\frac{3\sqrt{3}}{8}\times2 = 3\sqrt{3},而t = 1时f(x)=0,t=\frac{\sqrt{2}}{2}时f(x)=4\times(\frac{\sqrt{2}}{2})^{3}\times(5 - 4\times\frac{1}{2})=4\times\frac{2\sqrt{2}}{8}\times3=\frac{\sqrt{2}}{2}\times3=\frac{3\sqrt{2}}{2}\approx2.12,所以f(x)在[0,\frac{\pi}{4}]的最大值是3\sqrt{3}?不对,x = \frac{\pi}{6}在[0,\frac{\pi}{4}]吗?\frac{\pi}{6}\approx0.52,\frac{\pi}{4}\approx0.785,是的,所以最大值是3\sqrt{3}?但可能更简单的方法,f(x)=5\cos x - \cos5x,f^\prime(x)=-5\sin x + 5\sin5x = 5(\sin5x - \sin x)=5\times2\cos3x\sin2x = 10\cos3x\sin2x,在[0,\frac{\pi}{4}],\sin2x\geq0,当x\in[0,\frac{\pi}{6}],\cos3x\geq0,f(x)递增;x\in[\frac{\pi}{6},\frac{\pi}{4}],\cos3x\leq0,f(x)递减,所以x = \frac{\pi}{6}时f(x)取得最大值,f(\frac{\pi}{6})=5\times\frac{\sqrt{3}}{2}-\cos\frac{5\pi}{6}= \frac{5\sqrt{3}}{2}+\frac{\sqrt{3}}{2}=3\sqrt{3},所以(1)的最大值是3\sqrt{3}。
2. (2)证明:存在y\in[a - \theta,a + \theta],使得\cos y\leq\cos\theta
- 因为y = \cos x在[0,\pi]上单调递减,\theta\in(0,\pi),考虑区间[a - \theta,a + \theta],\cos x的最小值在区间端点或使x靠近\pi的地方。
- 假设\cos y\gt\cos\theta对所有y\in[a - \theta,a + \theta]成立,因为\cos x在[0,\pi]递减,在[-\pi,0]递增,\theta\in(0,\pi),a - \theta到a + \theta的区间长度为2\theta,\cos\theta=\cos(-\theta),\cos x在x = \theta和x = -\theta处值为\cos\theta,若区间[a - \theta,a + \theta]不包含\theta和-\theta,但由于\cos x的周期性和单调性,当\theta\in(0,\pi),取y = a+\theta(或a - \theta),若a+\theta\geq\theta(或其他情况),利用\cos x在[0,\pi]递减,若y\geq\theta,则\cos y\leq\cos\theta,所以假设不成立,即存在y\in[a - \theta,a + \theta]使得\cos y\leq\cos\theta。更严谨的:\cos x在R上,\cos\theta=\cos(-\theta),函数y = \cos x的图象关于x = k\pi对称,\theta\in(0,\pi),区间[a - \theta,a + \theta]的中点是a,长度为2\theta,\cos x在[\theta,2\pi-\theta]等区间的性质,或者用反证法:假设对任意y\in[a - \theta,a + \theta],都有\cos y\gt\cos\theta,因为\cos x在[0,\pi]单调递减,所以y\in(a - \theta,a + \theta)\subseteq(-\theta,\theta)(模2\pi),但区间长度2\theta,当\theta\in(0,\pi),(-\theta,\theta)的长度是2\theta,所以[a - \theta,a + \theta\(-\theta,\theta)(不妨设a = 0,平移不影响),但\cos\theta=\cos(-\theta),在x = \theta和x = -\theta处\cos x=\cos\theta,矛盾,所以存在y\in[a - \theta,a + \theta]使得\cos y\leq\cos\theta。
3. (3)求b的最小值
- 已知5\cos x-\cos(5x + \varphi)\leq b对任意x成立,即b\geq[5\cos x-\cos(5x + \varphi)]_{\max}。
- 利用三角函数和角公式展开\cos(5x + \varphi)=\cos5x\cos\varphi-\sin5x\sin\varphi,则5\cos x-\cos(5x + \varphi)=5\cos x-\cos5x\cos\varphi+\sin5x\sin\varphi。
- 由(1)知5\cos x-\cos5x的表达式,要使存在\varphi,让5\cos x-\cos(5x + \varphi)的最大值最小,可考虑5\cos x-\cos(5x + \varphi)=A\cos x + B\sin x + C形式,利用辅助角公式。或者注意到5\cos x-\cos5x,当\varphi = 0时,5\cos x-\cos5x,我们要找\varphi使得5\cos x-\cos(5x + \varphi)的最大值最小,即5\cos x=\cos(5x + \varphi) + b,利用三角函数的有界性,\vert5\cos x-\cos(5x + \varphi)\vert\leq\sqrt{5^{2}+1^{2}}?
来源:银祥