摘要:近日,复旦大学包文中团队以「A universal optoelectronic imaging platform with wafer-scale integration of two-dimensional semiconductors」¹为题在Chip上
近日,复旦大学包文中团队以「A universal optoelectronic imaging platform with wafer-scale integration of two-dimensional semiconductors」¹为题在Chip上发表研究论文,开发了一种基于二维半导体材料的晶圆级集成通用光电成像平台,实现了高性能、多功能和大规模集成的成像系统。第一作者为复旦大学的博士生王馨雨、王蝶、田雨琛,通讯作者为包文中(复旦大学、绍芯实验室)、陈红雷(中国科学院上海技术物理研究所)和邵雷(苏州大学)。Chip是全球唯一聚焦芯片类研究的综合性国际期刊,是入选了国家高起点新刊计划的「三类高质量论文」期刊之一。
这篇研究聚焦于开发一种基于二维半导体材料的晶圆级集成通用光电成像平台。研究团队采用了多种创新方法来实现这一目标。首先,他们选择了多种二维材料,包括MoS₂、MoTe₂等,这些材料具有独特的光电特性。为了促进二维材料与传统硅基电子器件的高效集成,科研人员创新性地研发了晶圆级集成制备技术²。该技术突破了传统界限,能够直接在预先精心设计的衬底上,精准地生长出大面积且品质卓越的二维材料薄膜,实现了两者间无缝且高兼容性的集成,为电子器件的性能提升开辟了新路径³⁻⁴。
图1 | 光电导(Photoconductive,PC) 和光伏(Photovoltaic,PV)特性。典型 PC(a)和 PV(d)光电探测器的结构图。PC(b)和 PV(c)光电探测器在光照下的能带排列示意图。d(i)金属半导体接触结构,d(ii)基于二维材料的垂直 PN 结结构,d(iii)基于二维材料的水平 PN 结结构, d(iv)P 型二维材料和 N 型硅组成的 PN 结结构。PC(e(i))和 PV(e(ii))光电探测器在黑暗和光照下的 I–V 特性;(f)通用测试系统的工作流程。
在器件制造过程中,研究团队还优化了读出电路(CMOS)的设计,以确保其与二维材料探测器的特性相匹配。他们采用了先进的微纳加工技术来制作电极和互连结构,确保了器件的高性能和可靠性。此外,研究人员还开发了特殊的封装技术,以保护敏感的二维材料免受环境因素的影响,从而延长器件的使用寿命。
图2 | 光电探测器器件的特性。PC(a)和 PV(b)光电探测器件的结构图和光学显微镜图像。PC(cd)和 PV(ef)光电探测器件在暗态以及不同波长和光照强度下的 I–V 特性。PC(gh)和 PV(ij)光电探测器件在不同波长和光照强度的下的时态光电流特性。
该团队成功制造出了大规模集成的二维半导体光电探测器阵列,实现高分辨率和超过100帧每秒的高帧率成像。这个系统不仅能够进行常规的可见光成像,还能够在近红外和短波红外波段工作,展现了优异的多光谱成像能力。特别值得一提的是,研究人员通过精心设计的光学系统和信号处理算法,实现了高质量的彩色成像、近红外夜视成像以及短波红外物质识别成像。
图3 | 读出电路(ROIC)结构和耦合系统。a, 用于耦合的印刷电路板示意图。b, 读出电路的分区布局模块。c, mxn阵列的探测器的示意图。PC(d)和 PV(e)探测器的内部整体电路设计图。
研究团队深入分析了这种新型成像平台的优势和潜在应用。与传统的硅基图像传感器相比,这种基于二维材料的平台具有更广的光谱响应范围,能够在单一芯片上实现多波段成像。这一特性在许多领域都有重要应用,例如在医疗成像中可以同时获取表面和深层组织的信息,在环境监测中可以识别不同的气体和污染物⁵⁻⁶。
图4 | 光电探测器和 ROIC 的集成。a, 成像系统的实验装置。b, 线扫描成像的基本原理和灰度映射关系。c, 成像过程中的不同阶段。
此外,研究人员还探讨了这种技术的可扩展性和工业化前景。他们指出,虽然目前的制造成本较高,但随着二维材料生产技术的进步和规模效应的显现,成本有望大幅降低。团队还提出了几个改进方向,包括进一步提高材料质量、优化器件结构以及开发更先进的信号处理算法,以进一步提升系统性能。
最后,研究人员展望了这项技术的未来发展。他们认为,随着二维材料科学和工程的不断进步,这种通用光电成像平台有望在更多领域找到应用,如自动驾驶、增强现实、工业检测等。这项研究不仅推动了二维材料在光电子领域的应用,也为下一代多功能、高性能成像系统的发展指明了方向。
A universal optoelectronic imaging platform with wafer-scale integration of two-dimensional semiconductors¹
This groundbreaking study presents a universal optoelectronic imaging platform that integrates two-dimensional (2D) semiconductors on a wafer scale, pushing the boundaries of imaging technology. The research team has developed an innovative approach to combine different 2D materials, including MoS₂, WSe₂ and PtSe₂, with silicon-based CMOS readout circuits using advanced transfer printing techniques². This novel platform demonstrates high performance imaging capabilities over a wide spectral range, including visible, near-infrared and shortwave infrared wavelengths, overcoming the limitations of traditional silicon-based image sensors.
Fig. 1 | Photoconductive (PC) and photovoltaic (PV) characteristics. Structural diagrams of typical PC (a) and PV (d) photodetectors, d (i) represents a metal–semiconductor contact structure, d (ii) showcases a vertical PN junction structure based on two-dimensional materials, d (iii) illustrates a PN junction structure comprised of a p-type two-dimensional material and n-type silicon, d (iv) depicts a horizontal pn junction structure based on two-dimensional materials. Schematic diagrams of band alignments in PC (b) and PV (c) photodetectors when illuminated. Dark and illuminated I–V characteristics of PC (e(i)) and PV (e(ii)) photodetectors. General workflow of the universal testing system (f).
Researchers have successfully fabricated large-scale integrated arrays of 2D semiconductor photodetectors, achieving high-resolution imaging with millions of pixels and frame rates exceeding 100 fps. The system's multifunctional imaging capabilities include color imaging, near-infrared imaging and short-wave infrared imaging, all integrated into a single platform. This versatility is made possible by the unique optical and electronic properties of 2D materials, combined with the team's innovative integration and fabrication techniques.
Fig. 2 | The characteristics of our PD devices. Structure diagrams and optical microscope images of our PC (a) and PV (b) PDs. Dark and illuminated I–V characteristics of our PC (cd) and PV (e, f) PDs at varying wavelengths and intensities of illumination. Temporal photocurrent characteristics of our PC (gh) and PV (i, j) PDs under periodic xenon-light illumination at various optical wavelengths and intensities, respectively.
Fig. 3 | The architecture of our readout integrated circuit (ROIC) and the coupling system. a, Schematic diagram of the PCB used for coupling. b, Layout module of the partitioning of the ROIC. c, photograph of our detector; internal circuit diagram for mxn linear array PC (d) and PV (e) detectors on PCB.
Fig. 4 | The integration of photodetector and ROIC. a, the experimental setup of the imaging system under working conditions. b, the principles underlying line-scan imaging. c, the stages of the imaging pipeline. Abbreviation: ROIC, readout integrated circuit.
By exploiting the exceptional properties of 2D materials and wafer-scale integration, this research opens new possibilities for next-generation imaging systems. The platform's broad wavelength coverage, high integration density, excellent performance and multifunctionality offer significant advantages over conventional silicon-based sensors³⁻⁴. These advances have potential applications in various fields, including medical imaging, machine vision, autonomous driving and environmental monitoring. The study not only advances the field of 2D materials in optoelectronics, but also paves the way for future high-performance, multifunctional imaging devices with superior capabilities and versatility compared to existing technologies⁵⁻⁶.
参考文献
1. Wang, X. et al. A universal optoelectronic imaging platform with wafer-scale integration of two-dimensional semiconductors. Chip3, 100107 (2024).
2. Long, M., Wang, P., Fang, H. & Hu, W. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 29, 1803807 (2018).
3. Xu, J. et al. Tunable linearity of high-performance vertical dual-gate vdW phototransistors. Adv. Mater. 33, 2008080 (2021).
4. Jayachandran, D. et al. A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector. Nat. Electron. 3, 646-655 (2020).
5. Jeong, M. H. et al. Multilayer WSe₂/MoS₂ heterojunction phototransistors through periodically arrayed nanopore structures for bandgap engineering. Adv. Mater. 34, 2108412 (2022).
6. Xing, S. et al. Photomultiplication-type organic photodetectors for near-infrared sensing with high and bias-independent specific detectivity. Adv. Sci. 9, 2105113 (2022).
论文链接:
作者简介
王馨雨,复旦大学微电子学院包文中研究员课题组博士生,主要从事光电领域的研究。
Xinyu Wang is a PhD student in the research group of Professor Bao from the School of Microelectronics, Fudan University, specializing in the research of optoelectronics.
王蝶,复旦大学微电子学院包文中研究员课题组博士生,主要从事光电领域的研究。
Die Wang is a PhD student in the research group of Professor Bao from the School of Microelectronics, Fudan University, specializing in the research of optoelectronics.
田雨琛,复旦大学微电子学院包文中研究员课题组博士生,主要从事光电领域的研究。
Yuchen Tian is a PhD student in the research group of Professor Bao from the School of Microelectronics, Fudan University, specializing in the research of optoelectronics.
包文中,复旦大学微电子学院研究员,博士生导师。国家级领军人才,绍芯实验室副主任。从事新型半导体材料的相关基础和集成电路应用研究。发表英文论文200多篇,总引用四万多次,科研成果多次被国际和国内媒体采访和报道。多年入选「科睿唯安全球高被引研究者」和爱思唯尔「中国高被引学者」。曾获得2016年国际物理纯粹与应用学会(IUPAP)青年科学家奖(凝聚态物理),以及 2017年的求是基金会杰出青年学者。2023年获得了「上海市青年科技英才」。主持承担了国家科技部重点研发、国家自然科学基金、上海市集成电路科技支撑专项等多个项目。
Bao Wenzhong currently serves as a Researcher and PhD Supervisor at the School of Microelectronics, Fudan University in Shanghai. He graduated with a Bachelor's degree in Physics from Nanjing University and earned his Ph.D. from the University of California, Riverside, USA. Following that, he pursued postdoctoral research at the University of Maryland. In recent years, his primary focus has been on the development of wafer-scale integration processes for two-dimensional (2D) materials, leveraging these advancements to construct prototype devices featuring novel 2D structures and principles, thereby driving the future practical applications of 2D semiconductor materials. He has published over 130 English-language papers in fundamental science and engineering applications, which have been cited over 30,000 times, earning him inclusion in Clarivate Analytics' 2018 list of Highly Cited Researchers.
陈洪雷,现任中国科学院上海技术物理研究所正高级研究员,主要从事红外光电探测器专用读出电路设计以及红外焦平面探测器及组件测试技术研究,在多个国家重大型号航天工程项目中负责红外焦平面探测器读出电路芯片设计研究、测试技术研究以及探测器可靠性研究,作为项目负责人承担国家重大项目和科学院支撑等科研项目,发表SCI/EI等文章20余篇,今年在高影响因子期刊发表数篇论文。近年来的研究方向包括大规模高速低噪声红外焦平面读出电路、集成ADC的数字化焦平面读出电路、数字化红外焦平面探测器测试研究和红外焦平面探测器噪声特性研究和新型二维光电探测器研究等。
Honglei Chen is a senior researcher at Shanghai Institute of Physics and Technology, Chinese Academy of Sciences. He is mainly engaged in the design of infrared photoelectric detector readout circuits and testing technology of infrared focal plane detectors and components, and is responsible for the design of infrared focal plane detector readout circuits, testing technology, and detector reliability research in a number of national major aerospace engineering projects, and is responsible for the following research projects as a project leader As a project leader, he has undertaken major national projects and scientific research projects supported by the Academy of Sciences, etc. He has published more than 20 SCI/EI articles, and several papers in high impact factor journals this year. In recent years, his research interests include large-scale high-speed and low-noise infrared focal plane readout circuits, digital focal plane readout circuits with integrated ADC, digital infrared focal plane detector test research, infrared focal plane detector noise characterisation, and new type of two-dimensional photodetectors.
邵雷,苏州大学电子信息学院高级实验师,主要从事检测控制技术、嵌入式系统设计、物联网等领域的相关研究。
Lei Shao is a senior laboratory technician at the School of Electronic Information of Soochow University, mainly engaged in research related to detection and control technology, embedded system design, Internet of Things and other fields.
关于Chip
Chip(ISSN:2772-2724,CN:31-2189/O4)是全球唯一聚焦芯片类研究的综合性国际期刊,已入选由中国科协、教育部、科技部、中科院等单位联合实施的「中国科技期刊卓越行动计划高起点新刊项目」,为科技部鼓励发表「三类高质量论文」期刊之一。
Chip期刊由上海交通大学出版,联合Elsevier集团全球发行,并与多家国内外知名学术组织展开合作,为学术会议提供高质量交流平台。
Chip秉承创刊理念: All About Chip,聚焦芯片,兼容并包,旨在发表与芯片相关的各科研领域尖端突破性成果,助力未来芯片科技发展。迄今为止,Chip已在其编委会汇集了来自14个国家的69名世界知名专家学者,其中包括多名中外院士及IEEE、ACM、Optica等知名国际学会终身会士(Fellow)。
Chip第三卷第四期将于2024年12月在爱思维尔Chip官网以金色开放获取形式(Gold Open Access)发布,欢迎访问阅读本期最新文章。
来源:Future远见