颠覆DRAM路线图
动态随机存取存储器 (DRAM)是传统计算架构中的主存储器,其位单元在概念上非常简单。它由一个电容器 (1C) 和一个硅基晶体管 (1T)组成。电容器的作用是存储电荷,而晶体管则用于访问电容器,以读取存储的电荷量或存储新电荷。
动态随机存取存储器 (DRAM)是传统计算架构中的主存储器,其位单元在概念上非常简单。它由一个电容器 (1C) 和一个硅基晶体管 (1T)组成。电容器的作用是存储电荷,而晶体管则用于访问电容器,以读取存储的电荷量或存储新电荷。
EUV技术自从其提出以来,面临着多重挑战,包括高成本、复杂的光学系统以及需要在高精度下制造光罩等。然而,随着技术不断成熟,EUV逐渐突破了制程限制,尤其在10nm及以下的制程中展现出了其不可替代的优势。
泛林集团 Lam Research 美国加州当地时间本月 14 日宣布,其干式光刻胶技术成功通过 imec 认证,可直接在逻辑半导体后道工艺(IT之家注:BEOL,互联层制作)中实现 28nm 间距的直接图案化,能满足 2nm 及以下先进制程的需求。
比利时EnergyVille项目(鲁汶大学、VITO、Imec和哈塞尔特大学之间的合作项目)的合作伙伴Imec与塞浦路斯大学合作,证明了钙钛矿太阳能模组的长期户外稳定性。
欧洲四大顶尖研究机构负责人与欧盟委员会副主席会面,启动首批五条欧盟芯片法案试点生产线。包括比利时imec、法国CEA - Leti等相关机构参与。这些试验生产线旨在弥合研究创新与制造的差距,加强CMOS半导体生态系统 。
种子轮融资由 imec.xpand 领投,并得到 Eurazeo、XAnge、Vector Gestion 和 imec 的支持,该公司由首席执行官 Sylvain Dubois(前谷歌员工)和首席技术官 Sebastien Couet(前 imec 员工)创
随着半导体技术不断进步,传统的集成电路供电方法正面临重大挑战。现代芯片日益增加的复杂性和密度已经推动正面供电网络达到极限,促使研究人员和制造商探索创新解决方案。背面供电网络(BSPDN)就是受到广泛关注的方案。本文将探讨BSPDN的概念、优势、关键技术以及在2
硅通孔 (TSV) 可缩短互连长度,从而降低芯片功耗和延迟,以更快地将信号从一个设备传输到另一个设备或在一个设备内传输。先进的封装技术可在更薄、更小的模块中实现所有这些功能,适用于移动、AR/VR、生物医学和可穿戴设备市场。
硅通孔 (TSV) 可缩短互连长度,从而降低芯片功耗和延迟,以更快地将信号从一个设备传输到另一个设备或在一个设备内传输。先进的封装技术可在更薄、更小的模块中实现所有这些功能,适用于移动、AR/VR、生物医学和可穿戴设备市场。
有这样一家公司,它宣称自己已经造出“世界上最小的像素”,并造出全球第一个基于相变材料的“真彩色 3D 全息显示器”。当地时间 1 月 3 日,这家公司再迎新动态。
一直以来,从特斯拉开始,到国内新势力(蔚来、小鹏、理想)布局算力芯片的自主研发,都是备受关注和争议。尤其是围绕成本和投资回报、自主可控以及软硬协同的讨论,从来没有停止。
2024 年,是欧洲领先的微电子研究中心imec 成立 40 周年,imec 首席执行官Luc Van den hove强调了微芯片在解决人类面临的一些最紧迫挑战方面的潜力。
近二十年来,人们已经清楚地认识到,受摩尔定律启发的纯尺寸缩放不再是预测 CMOS 技术节点演进的唯一指标。第一个迹象出现在 2005 年左右,当时固定功率下的节点到节点性能改进(称为 Dennard 缩放)开始放缓。逐渐地,半导体行业开始用其他技术创新来补充以
几十年来,超快且易失性的SRAM一直被用作高性能计算架构中的嵌入式缓存,它位于多级(L1、L2、L3……)分层系统中非常靠近处理器的位置。它的作用是存储常用数据和指令以便快速检索,其中 L1 是所有缓存中最快的。SRAM 位密度扩展速度已经放缓一段时间了,位单