VASP教程|如何计算任务?
VASP 能够进行哪些过程的计算?怎样设置?我们平时最常用的研究方法是做单点能计算,结构优化、从头计算的分子动力学和电子结构相关性质的计算。一般我们的研究可以按照这样的过程来进行 如果要研究一个体系的最优化构型问题可以首先进行结构弛豫优化 然后对优化后的结构进
VASP 能够进行哪些过程的计算?怎样设置?我们平时最常用的研究方法是做单点能计算,结构优化、从头计算的分子动力学和电子结构相关性质的计算。一般我们的研究可以按照这样的过程来进行 如果要研究一个体系的最优化构型问题可以首先进行结构弛豫优化 然后对优化后的结构进
Vienna Ab initio Simulation Package (VASP) 是一个计算机程序,用于从第一性原理进行原子尺度材料建模,例如电子结构计算和量子力学分子动力学。
磁性材料在导航、电子、医疗等领域有着着广泛的应用,对我们的日常生活有着深远的影响。材料的磁性受到原子磁矩大小和排列方式的影响,宏观上表现为顺磁、铁磁、反铁磁、亚铁磁等特性。在居里温度或奈尔温度下材料的磁性能发生转化,即从铁磁/反铁磁性转变为顺磁性。材料的磁性涉
想要获得文献中的台阶图吗?想要获得文献中的过渡态能垒吗?想要获得各种分子在晶体表面、二维材料、一维材料表面活性位点的吸附构型与吸附能吗?想要将常规的三维催化剂结构转变为可用于计算的表面与二维结构吗?以上问题都不难,5天吸附催化计算培训轻松解决!本次课程由华算科
DFT计算已经被广泛应用于半导体、电池、催化剂材料的设计、筛选、性能研究等方面,具有效率高、成本低、结果准确、机理清晰等优势。
相对于传统的金属催化剂,非金属催化剂具有选择性广、性能突出、结构稳定等优势。非金属催化剂在能源、环境、化工等领域具有广泛的应用。非金属催化剂能够有效地催化各种化学反应,包括HER、OER/ORR、CO2RR、NO3RR、NRR。
材料体性质的计算;表面模型的构造;表面结构的优化;表面性质的计算。
随着计算机技术的迅猛发展,计算模拟与数值计算在物理、化学、生物、材料科学、天文学等领域中扮演着愈发重要的角色。通过计算手段,复杂问题的求解得以更加高效与精确。近年来,第一性原理计算在新材料结构与物性预测、化学反应微观机制研究以及材料基础物性探索等方面的重要性日
半导体材料广泛应用于各类电子器件中,直接影响的人们的生活水平和科学技术的发展。在各种半导体材料中,钙钛矿和二维材料受到了科研人员的大量关注,尤其是他们的电子和催化性质。
半导体材料行业是目前国家重点鼓励与扶植发展的行业之一,是支撑经济社会发展和保障国家安全的战略性和基础性产业,当下热门导体材料有GaN、ZnO、SiC等。人们对半导体材料开展了大量的理论与实验研究,主要聚焦在结构、电学、光学、缺陷、掺杂、吸附等性质。
单原子、双原子催化剂是目前电催化领域研究的最多的催化剂材料,他们具有原子利用率高、活性高、性能精确可调的特点,能够有效地催化各种化学反应,包括HER、OER、CO2RR、NO3RR等,在能源、化工等领域起着重要作用。
磁性材料在导航、电子、医疗等领域有着着广泛的应用,对我们的日常生活有着深远的影响。
二维材料因具有较大的表面积、独特的电子结构而受到人们越来越多的关注。热门二维材料包括Graphene、MoS2、Phosphorene、MXene、MBene等,广泛应用于光电器件、锂离子电池、气体传感器、催化等领域。
A:基于DFT的第一性原理计算是不考虑温度的,默认计算结果是0K下。若要考虑温度,可以采用AIMD进行动力学计算。